
Think Pair Share

Think-Pair-Share (TPS) is a collaborative learning strategy in which students work together to

solve a problem or answer a question about an assigned reading.

This technique requires students to

 (1) Think individually about a topic or answer to a question; and

 (2) Share ideas with classmates. Discussing an answer with a partner serves to maximize

participation, focus attention and engage students in comprehending the reading material.

Name of the Faculty: Dr. Gandhavalla Rao SambaSiva Designation: Professor

Subject: Software Engineering Year / Semester: III- I Topic: System Model

System modeling is the process of developing abstract models of a system, with each model

presenting a different view or perspective of that system. It is about representing a system using

some kind of graphical notation, which is now almost always based on notations in the Unified \

Modeling Language (UML). Models help the analyst to understand the functionality of the

system; they are used to communicate with customers.

Models can explain the system from different perspectives:

• An external perspective, where you model the context or environment of the system.

• An interaction perspective, where you model the interactions between a system and its

environment, or between the components of a system.

• A structural perspective, where you model the organization of a system or the structure of the

data that is processed by the system.

• A behavioral perspective, where you model the dynamic behavior of the system and how it

responds to events.

Five types of UML diagrams that are the most useful for system modeling:

• Activity diagrams, which show the activities involved in a process or in data processing.

• Use case diagrams, which show the interactions between a system and its environment.

• Sequence diagrams, which show interactions between actors and the system and between system

components.

• Class diagrams, which show the object classes in the system and the associations between these

classes.

• State diagrams, which show how the system reacts to internal and external events.

Models of both new and existing system are used during requirements engineering. Models of

the existing systems help clarify what the existing system does and can be used as a basis for

discussing its strengths and weaknesses. These then lead to requirements for the new system.

Models of the new system are used during requirements engineering to help explain the

proposed requirements to other system stakeholders. Engineers use these models to discuss

design proposals and to document the system for implementation.

Context and process models

Context models are used to illustrate the operational context of a system - they show what lies

outside the system boundaries. Social and organizational concerns may affect the decision on

where to position system boundaries. Architectural models show the system and its relationship

with other systems.

System boundaries are established to define what is inside and what is outside the system. They

show other systems that are used or depend on the system being developed. The position of the

system boundary has a profound effect on the system requirements. Defining a system boundary

is a political judgment since there may be pressures to develop system boundaries that

increase/decrease the influence or workload of different parts of an organization.

Context models simply show the other systems in the environment, not how the system being

developed is used in that environment. Process models reveal how the system being developed

is used in broader business processes. UML activity diagrams may be used to define business

process models.

The example below shows a UML activity diagram describing the process of involuntary

detention and the role of MHC-PMS (mental healthcare patient management system) in it.

Interaction models

Types of interactions that can be represented in a model:

• Modeling user interaction is important as it helps to identify user requirements.

• Modeling system-to-system interaction highlights the communication problems that may arise.

• Modeling component interaction helps us understand if a proposed system structure is likely to

deliver the required system performance and dependability.

Use cases were developed originally to support requirements elicitation and now incorporated

into the UML. Each use case represents a discrete task that involves external interaction with a

system. Actors in a use case may be people or other systems. Use cases can be represented using

a UML use case diagram and in a more detailed textual/tabular format.

Simple use case diagram:

Use case description in a tabular format:

Use case title Transfer data

Description

A receptionist may transfer data from the MHC-PMS to a general patient record

database that is maintained by a health authority. The information transferred

may either be updated personal information (address, phone number, etc.) or a

summary of the patient's diagnosis and treatment.

Actor(s) Medical receptionist, patient records system (PRS)

Preconditions

Patient data has been collected (personal information, treatment summary);

The receptionist must have appropriate security permissions to access the

patient information and the PRS.

Postconditions PRS has been updated

Main success

scenario

1. Receptionist selects the "Transfer data" option from the menu.

2. PRS verifies the security credentials of the receptionist.

3. Data is transferred.

4. PRS has been updated.

Extensions

2a. The receptionist does not have the necessary security credentials.

2a.1. An error message is displayed.

2a.2. The receptionist backs out of the use case.

UML sequence diagrams are used to model the interactions between the actors and the objects

within a system. A sequence diagram shows the sequence of interactions that take place during a

particular use case or use case instance. The objects and actors involved are listed along the top

of the diagram, with a dotted line drawn vertically from these. Interactions between objects are

indicated by annotated arrows.

Structural models

Structural models of software display the organization of a system in terms of the components

that make up that system and their relationships. Structural models may be static models, which

show the structure of the system design, or dynamic models, which show the organization of the

system when it is executing. You create structural models of a system when you are discussing

and designing the system architecture.

UML class diagrams are used when developing an object-oriented system model to show the

classes in a system and the associations between these classes. An object class can be thought of

as a general definition of one kind of system object. An association is a link between classes that

indicates that there is some relationship between these classes. When you are developing models

during the early stages of the software engineering process, objects represent something in the

real world, such as a patient, a prescription, doctor, etc.

Generalization is an everyday technique that we use to manage complexity. In modeling

systems, it is often useful to examine the classes in a system to see if there is scope for

generalization. In object-oriented languages, such as Java, generalization is implemented using

the class inheritance mechanisms built into the language. In a generalization, the attributes and

operations associated with higher-level classes are also associated with the lower-level classes.

The lower-level classes are subclasses inherit the attributes and operations from their super

classes. These lower-level classes then add more specific attributes and operations.

An aggregation model shows how classes that are collections are composed of other classes.

Aggregation models are similar to the part-of relationship in semantic data models.

Behavioral models

Behavioral models are models of the dynamic behavior of a system as it is executing. They

show what happens or what is supposed to happen when a system responds to a stimulus from its

environment. Two types of stimuli:

• Some data arrives that has to be processed by the system.

• Some event happens that triggers system processing. Events may have associated data, although

this is not always the case.

Many business systems are data-processing systems that are primarily driven by data. They are

controlled by the data input to the system, with relatively little external event processing. Data-

driven models show the sequence of actions involved in processing input data and generating an

associated output. They are particularly useful during the analysis of requirements as they can be

used to show end-to-end processing in a system. Data-driven models can be created using

UML activity diagrams:

Data-driven models can also be created using UML sequence diagrams:

Real-time systems are often event-driven, with minimal data processing. For example, a landline

phone switching system responds to events such as 'receiver off hook' by generating a dial

tone. Event-driven models show how a system responds to external and internal events. It is

based on the assumption that a system has a finite number of states and that events (stimuli) may

cause a transition from one state to another. Event-driven models can be created using

UML state diagrams:

Objective of the Activity:

Models are representations that can aid in defining, analyzing, and communicating a set of

concepts.

System models are specifically developed to support analysis, specification, design, verification,

and validation of a system, as well as to communicate certain information.

 Execution Plan:

The teacher decides upon the text to be read and develops the set of questions or prompts that

target key content concepts. The teacher then describes the purpose of the strategy and provides

guidelines for discussions. As with all strategy instruction, teachers should model the procedure

to ensure that students understand how to use the strategy. Teachers should monitor and support

students as they work.

1. T : (Think) Teachers begin by asking a specific question about the text. Students “think” about

what they know or have learned about the topic.

2. P : (Pair) Each student should be paired with another student or a small group.

3. S : (Share) Students share their thinking with their partner. Teachers expand the “share” into a

whole-class discussion.

Expected Outcomes:

 The students can be able to understand the process of taking the correct requirements into the

project and various models used for representing the requirements.

