
Compiler Design 

 

Natural Language Processing (NLP) 
High-level language programs are usually written (coded) as ASCII text into a source code file. 

A unique file extension (Examples: .asm .c .cpp .java .js .py) is used to identify it as a source 

code file. As you might guess for our examples – Assembly, “C”, “C++”, Java, JavaScript, and 

Python, however, they are just ASCII text files (other text files usually use the extension of 

.txt). The source code produced by the programmer must be converted to an executable 

machine code file specifically for the computer’s CPU (usually an Intel or Intel-compatible 

CPU within today’s world of computers). There are several steps in getting a program from its 

source code stage to running the program on your computer.  

Historically, we had to use several software programs (a text editor, a compiler, a linker, and 

operating system commands) to make the conversion and run our program. However, today all 

those software programs with their associated tasks have been integrated into one program. 

However, this one program is really many software items that create an environment used by 

programmers to develop software. Thus the name: Integrated Development Environment or 

IDE. 

Programs written in a high-level language are either directly executed by some kind of 

interpreter or converted into machine code by a compiler (and assembler and linker) for the 

CPU to execute. JavaScript, Perl, Python, and Ruby are examples of interpreted programming 

languages. C, C++, C#, Java, and Swift are examples of compiled programming 

languages.[2] The following figure shows the progression of activity in an IDE as a programmer 

enters the source code and then directs the IDE to compile and run the program. 

https://press.rebus.community/programmingfundamentals/chapter/integrated-development-environment/#footnote-154-2


Integrated Development Environment or IDE 

Upon starting the IDE software the programmer usually indicates the file he or she wants to 

open for editing as source code. As they make changes they might either do a “save as” or 

“save”. When they have finished entering the source code, they usually direct the IDE to 

“compile & run” the program. The IDE does the following steps: 

1. If there are any unsaved changes to the source code file it has the test editor save the 

changes. 

2. The compiler opens the source code file and does its first step which is executing 

the pre-processor compiler directives and other steps needed to get the file ready for 

the second step. The #include will insert header files into the code at this point. If it 

encounters an error, it stops the process and returns the user to the source code file 

within the text editor with an error message. If no problems encountered it saves the 

source code to a temporary file called a translation unit. 

3. The compiler opens the translation unit file and does its second step which 

is converting the programming language code to machine instructions for the CPU, a 

data area, and a list of items to be resolved by the linker. Any problems encountered 

(usually a syntax or violation of the programming language rules) stops the process and 

returns the user to the source code file within the text editor with an error message. If 



no problems encountered it saves the machine instructions, data area, and linker 

resolution list as an object file. 

4. The linker opens the program object file and links it with the library object files as 

needed. Unless all linker items are resolved, the process stops and returns the user to 

the source code file within the text editor with an error message. If no problems 

encountered it saves the linked objects as an executable file. 

5. The IDE directs the operating system’s program called the loader to load the 

executable file into the computer’s memory and have the Central Processing Unit 

(CPU) start processing the instructions. As the user interacts with the program, entering 

test data, he or she might discover that the outputs are not correct. These types of errors 

are called logic errors and would require the user to return to the source code to change 

the algorithm. 

Resolving Errors 

Despite our best efforts at becoming perfect programmers, we will create errors. Solving these 

errors is known as debugging your program. The three types of errors in the order that they 

occur are: 

1. Compiler 

2. Linker 

3. Logic 

There are two types of compiler errors; pre-processor (1st step) and conversion (2nd step). A 

review of Figure 1 above shows the four arrows returning to the source code so that the 

programmer can correct the mistake. 

During the conversion (2nd step) the compiler might give a warning message which in some 

cases may not be a problem to worry about. For example: Data type demotion may be exactly 

what you want your program to do, but most compilers give a warning message. Warnings 

don’t stop the compiling process but as their name implies, they should be reviewed. 

The next three figures show IDE monitor interaction for the Bloodshed Dev-C++ 5 

compiler/IDE. 



Compiler Error (the red line is where the compiler stopped)

Linker Error (no red line with an error message describing a linking problem)



Logic Error (from the output within the “Black Box” area) 

Key Terms 

compiler 

Converts source code to object code. 

debugging 

The process of removing errors from a program. 1) compiler 2) linker 3) logic 

linker 

Connects or links object files into an executable file. 

loader 

Part of the operating system that loads executable files into memory and directs the 

CPU to start running the program. 

pre-processor 

The first step the compiler does in converting source code to object code. 

text editor 

A software program for creating and editing ASCII text files. 

warning 

A compiler alert that there might be a problem. 

 

 

 



References 

1. https://press.rebus.community/programmingfundamentals/chapter/integrate

d-development-environment/ 

2. cnx.org: Programming Fundamentals – A Modular Structured Approach using 

C++ 

3. Wikipedia: Integrated development environment  

4. Wikipedia: Interpreter (computing)   

 


