

 COURSE FILE

MODERN SOFTWARE ENGINEERING
(Subject Codes (R 16 B.Tech): 138DK)

IV Year - II Sem B.TECH. (IT)

Submitted to

DEPARTMENT OF INFORMATION TECHNOLOGY

BY

Mr. Qazi Basheer, Associate Professor

NAWAB SHAH ALAM KHAN COLLEGE OF
ENGINEERING AND TECHNOLOGY

New Malakpet, Hyderabad, Telangana- 500024
(Affiliated to JNTUH, Approved by AICTE, NEWDELHI) http://www.nsakcet.ac.in/

 2020 – 2021

NAWAB SHAH ALAM KHAN COLLEGE OF ENGINEERING &
TECHNOLOGY

DEPARTMENT OF INFORMATION TECHNOLOGY

(Name of the Subject/Lab Course): MODERN SOFTWARE ENGINEERING

(JNTU CODE: 138DK Program: UG
Branch: IT Version No: 1

Year: I Document Number : NSAKCET/IT/MSE/01

Semester: I No. of Pages:

Classification status (Unrestricted/Restricted) : Distribution List:

Prepared by :

1) Name : Qazi. M. A. Basheer

2) Sign :___________________

3) Design :- Associate Professor

4) Date :_________________________

Updated by :

1) Name :

2) Sign :

3) Design :

4) Date :

Verified by : *For Q.C only

1) Name : 1)Name :

2) Sign : 2) Sign :

3) Designation : 3) Design :

4) Date : 4) Date :

Approved by (HOD) :

1) Name: Dr. G. S. S. Rao

2) Sign :

3) Date :

Contents

S.No Topic

1 Cover Page

2 Syllabus Copy

3 Vision & Mission Of The Institution

4 Vision And Mission Of The Department

5 PEOs and POs

6 Course objectives and Course outcomes

7 CO-PO Mapping with Venn diagrams

8 Prerequisites if any

9 Class Timetable

10 Individual Timetable

11 Lecture schedule with methodology being used/adopted

12 Lesson Schedule

13 Detailed Notes

14 Additional topics beyond the syllabus

15 University Question papers of previous years

16 Question Bank, Unit wise Quiz Questions and long Key

17 Assignment Questions

18 Mid Wise Question Paper including Quiz

19 Tutorial problems

20 Known gaps ,if any

21 Discuss topic ,if any

22 References, Journals, websites and E-links if any

23 Attainment

24 Student List with slow Learners and advance learner

2. Syllabus Copy

MODERN SOFTWARE ENGINEERING
B.Tech. IV Year II Sem.

L T P C
Course Code: CS854PE 3 0 0 3

UNIT ‐ I
Introduction Extreme Programming (XP) ‐ Agile Development
Why Agile ‐ Understanding Success, Beyond Deadlines, Importance of
Organizational Success, Introduction to Agility, How to Be Agile ‐ Agile methods, Don't make your
own method, Road to mastery, Understanding XP (Extreme Programming) ‐ XP life cycle, XP team,
XP Concepts, Adopting XP ‐ Knowing whether XP is suitable, Implementing XP, assessing Agility,
Practicing XP ‐ Thinking ‐ Pair Programming, Energized work, Informative
Workspace, Root cause Analysis, Retrospectives
UNIT ‐ II
Collaborating: Trust, Sit together, Real customer involvement, Ubiquitous
language, meetings, coding standards, Iteration demo, Reporting
UNIT – III
Releasing: Bugfree Release, Version Control, fast build, continuous integration,
Collective ownership, Documentation
UNIT ‐ IV
Planing: Version, Release Plan, Risk Management, Iteration Planning, Slack,
Stories, Estimating
UNIT ‐ V
Developing: Incremental requirements, Customer tests, Test driven development, Refactoring,
Incremental design and architecture, spike solutions, Performance optimization, Exploratory testing
TEXT BOOK:
1. The art of Agile Development, James Shore and Shane Warden, 11th Indian
Reprint,
O'Reilly, 2018
REFERENCES:

1. Learning Agile, Andrew Stellman and Jennifer Greene, O’Reilly, 4th Indian
Reprint, 2018
2. Practices of an Agile Developer, Venkat Subramaniam and Andy Hunt, SPD, 5th Indian Reprint,
2015
3. Agile Project Management ‐ Jim Highsmith, Pearson Low price Edition 2004

3. Vision & Mission of the
Institute

3. Vision and Missions of the Institution

Vision of the Institution:
To impart quality technical education with strong ethics, producing technically sound engineers capable of serving
the society and the nation in a responsible manner.

Mission of the Institution:
M1: To provide adequate knowledge encompassing strong technical concepts and soft skills thereby inculcating
sound ethics.

M2: To provide a conducive environment to nurture creativity in teaching- learning process.

M3: To identify and provide facilities which create opportunities for deserving students of all communities to excel
in their chosen fields.

M4: To strive and contribute to the needs of the society and the nation by applying advanced engineering and
technical concepts.

4. Vision and Mission of the
Department

4. Vision and Missions of the Department

Vision of the department: To produce quality IT professionals, with an ability to adapt to ever changing IT needs of
local, national and international arena, through effective teaching & learning, interactions with alumni and industry.
Mission No. Mission Statements

M1 To provide a holistic learning environment for students through ethical
practices.

M2 To provide quality infrastructure through practical exposure to the latest
technology requirements.

M3 To train the students in soft skills to excel in placements and competitive
exams at higher level the industry ready.

M4 To have a healthy Industry - Institute interaction through faculty
development programs, student internships, guest lectures and using latest
teaching learning methodologies.

M5 To provide effective platform to meet the industrial requirement and
provide research oriented environment for the faculty to meet the
continuous societal needs.

5. Pos and PSOs

5. Program Outcomes and Program Specific Outcomes
List of Program Outcomes
PO1 Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of
complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified
needs with appropriate consideration for the public health and safety, and the
cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and
interpretation of data and synthesis of the information to provide valid
conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques,
resources, and modern engineering and IT tools including prediction and
modelling to complex engineering activities with an understanding of the
limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate
the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and
responsibilities

PO9 Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities
with the engineering community and with society at large, such as, being able
to comprehend and write effective reports and design documentation, make
effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding
of the engineering and management principles and apply these to one’s own
work, as a member and leader in a team, to manage projects and in
multidisciplinary fields

PO12 Life-long learning: Recognize the need for, and have the preparation and
ability to engage in independent and life-long learning in the broadest context
of technological

PSO1 Develop efficient information management systems using latest development tools
catering to the globally changing requirements in multi-disciplinary domains.

PSO2 Manage real time IT projects with consideration of human, financial, ethical and
environmental factors and an understanding of policy implications.

6. Course Objectives and Course
Outcomes

6. Course Objectives and Course Outcomes

Course Objectives:

1. Learn and identify the theoretical and methodological issues involved in modern software engineering

2. To be able to understand Extreme Programming (XP) basics and program design with functions using XP.
3. To understand a range of adopting agile programming development, as well as the study and development

techniques.
4. To understand the high-performance XP designed to strengthen the practical expertise.
5. Develop software projects based on current technologies, by managing resources economically and keeping

ethical values.

Course Outcomes:

After completing this course, the student must demonstrate the knowledge and ability to:
1. Examine the importance of agile development and the basics of XP.
2. Analyze and apply the collaborating methods of Agile Software Development.
3. Analyze and use the Bug Free Development of the Software and Release.
4. Illustrate the mechanisms of adopting and implementing the Agile Software.
5. Develop the software according to the customer requirements and expectations by managing resources

economically and keeping ethical values.

7. CO PO Mapping with Venn
Diagrams

7. PO and CO Mappings
After completing this course the student must demonstrate the knowledge and ability to:
CO1 examine the importance of agile development and the basics of XP,
CO2 analyze and apply the collaborating methods of Agile Software Development.
CO3 Analyze and use the Bug Free Development of the Software and Release.

CO4 illustrate the mechanisms of adopting and implementing the Agile Software.
CO5 develop the software according to the customer requirements and expectations by managing

resources economically and keeping ethical values.

COs AND POs Mapping

Cos/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2
CO1 3
CO2 3 3 3 3 3 3 3
CO3 3 3 1 3 3 3 3
CO4 3 3 3 3 3 3 3

Probability (CO# to PO#) =

 < 0.25 - No Correlation
> 0.25 and <= 0.50 - 1
>0.50 and <= 0.75 - 2
>0.75 and <= 1.00 - 3

8. CO and PO Venn Diagrams

 CO1 PO1

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation - CO1 to PO1 = 3

 CO2 PO1

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO2 to PO1 = 3

K1=Examine importance of
Agile Development
K2=Basics of XP

 Mathematics
 Science
 Engineering

fundamentals
 Complex Engg.

Problems

K1=Analyse collaborating
methods of ASD

K2= Apply collaborating
methods of ASD

 Mathematics
 Science
 Engineering fundamentals
 Complex Engg. Problems

 CO2 PO2

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 1/2=1

Correlation – CO2 to PO2 = 3

 CO2 PO5

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO2 to PO5 = 3

K1=Analyse collaborating
methods of ASD

K2= Apply collaborating
methods of ASD

 Analyse complex
engineering problems
Using principles of
mathematics, natural
sciences, and
engineering sciences

K1=Analyse collaborating
methods of ASD

K2= Apply collaborating
methods of ASD

 Modern engineering

and IT tools
 Prediction and

modelling to complex
engineering activities

 CO2 PO9

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO2 to PO9 = 3

 CO2 PO10

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation - CO1 to PO1 = 3

K1=Analyse collaborating

methods of ASD
K2= Apply collaborating

methods of ASD

Individual and team
work: Function effectively
as an individual, and as a
member or leader in
diverse teams, and in
multidisciplinary settings.

K1=Analyse collaborating

methods of ASD
K2= Apply collaborating

methods of ASD

 Communicate effectively
on complex engineering
activities

 Write effective reports
 Design documentation,
 Effective presentations

 CO2 PO12

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO2 to PO12 = 3

 CO3 PO1

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO3 to PO1 = 3

K1=Analyse collaborating

methods of ASD
K2= Apply collaborating

methods of ASD

Life-long learning:
Ability and need to
engage in independent
and life-long learning in
the broadest context of
technological change

K1=Analyse Bug free
development of software

K2= Use Bug free
development of software

 Mathematics
 Science
 Engineering fundamentals
 Complex Engg. Problems

 CO3 PO2

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO3 to PO2 = 3

 CO3 PO3

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+0/2 = 1/2=0.5

Correlation – CO3 to PO3 = 1

 K1=Analyse Bug free
development of
software

 K2= Use Bug free
development of
software

 Analyse complex
engineering problems
Using principles of
mathematics, natural
sciences, and engineering
sciences



K1=Analyse Bug free
development of software

K2= Use Bug free
development of software

 Design solutions for
complex engineering
problems

 Design system components
or processes



 CO3 PO5

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO3 to PO5 = 3

 CO3 PO9

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO3 to PO9 = 3

 K1=Analyse Bug free
development of
software

 K2= Use Bug free
development of
software

 Modern engineering and
IT tools

 Prediction and modelling
to complex engineering
activities



 K1=Analyse Bug free
development of
software

 K2= Use Bug free
development of
software

Individual and team work:
Function effectively as an
individual, and as a member or
leader in diverse teams, and in
multidisciplinary settings.



 CO3 P10

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO3 to PO10 = 3

 CO3 P12

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO3 to PO12 = 3

 K1=Analyse Bug free
development of
software

 K2= Use Bug free
development of
software

 Communicate effectively
on complex engineering
activities

 Write effective reports
 Design documentation,
 Effective presentations

 K1=Analyse Bug free
development of
software

 K2= Use Bug free
development of
software

Life-long learning: Ability
and need to engage in
independent and life-long
learning in the broadest
context of technological
change

 CO4 P03

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO4 to PO3 = 3

 CO4 PO9

Probability of CO# to PO# = P(K1) + P(K2)

= 1/1 =1

Correlation – CO4 to PO9 = 3

 K1= Illustrate the
mechanisms of
adopting and
implementing the
Agile Software

 Design solutions for
complex engineering
problems

 Design system components
or processes



 K1= Illustrate the
mechanisms of
adopting and
implementing the
Agile Software

Individual and team work:
Function effectively as an
individual, and as a member or
leader in diverse teams, and in
multidisciplinary settings.



 CO4 P10

Probability of CO# to PO# = P(K1) + P(K2)

= 1/2+1/2 = 2/2=1

Correlation – CO4 to PO10 = 3

 CO4 PO11

Probability of CO# to PO# = P(K1)

= 1/1 = 1

Correlation – CO4 to PO11 = 3

 K1= Illustrate the
mechanisms of
adopting and
implementing the
Agile Software

 Communicate effectively
on complex engineering
activities

 Write effective reports
 Design documentation,
 Effective presentations

 K1= Illustrate the
mechanisms of adopting
and implementing the
Agile Software



Project management :
Demonstrate knowledge and
understanding of the
engineering and management
principles and apply these to
one’s own work, as a member
and leader in a team, to
manage projects and in
multidisciplinary

 CO4 P12

Probability of CO# to PO# = P(K1) + P(K2)

= 1/1=1

Correlation – CO4 to PO12 = 3

 K1= Illustrate the
mechanisms of
adopting and
implementing the
Agile Software

Life-long learning: Ability
and need to engage in
independent and life-long
learning in the broadest
context of technological
change

8. Prerequisites

8. Prerequisites

1. Software Engineering.
2. Software Testing Tools

9. Class Timetable

IV B.TECH II SEM (A:Y 2020-21) REG (R16) BRANCH :- IT

TIME TABLE FOR ONLINE CLASSES W.EF :07-04-2021

DAY/ TIME 09:30AM -
10:15 AM

10:20AM-
11:00 AM

11:30 AM-
12:10 PM

 1 2 3
MONDAY EIA EIA HCI
TUESDAY EIA MSE HCI

WEDNESDAY HCI MSE MSE
THURSDAY PROJECT WORK

FRIDAY PROJECT WORK

SATURDAY PROJECT WORK

CLASS

COORDINATOR HOD PRINCIPAL
MS. TAHERA ABID DR. G.S. RAO DR. SYED ABDUL SATTAR

S.NO NAME OF SUBJECT NAME OF FACULTY
1 MODERN SOFTWARE ENGINEERING(PE-V) (MSE) MR QAZI M. A. BASHEER

2 HUMAN COMPUTER INTERACTION (PE-VI) (HCI) DR. G.S.S.RAO

3 ENVIRONMENTAL IMPACT ASSESSMENT (OE-III)
(EIA)

MR AMER KHUSRO

4 PROJECT CO-ORDINATOR MS TAHERA ABID

10. Individual Timetable

 Faculty Name: Qazi M A Basheer

Day/Time 10:30‐11:30
11‐

12:40
12:40‐
1:30P.M

1:30‐
2:30

2:30‐
3:30 03:30/4:30

Mon DS

P
ra
ye

r
&
 L
u
n
ch
 T
im

e

Tue MSE

Wed MSE

Thurs DS

Fri DS

Sat

 DS Data Science

 MSE
Modern
Software Engg.

11. Lecture Schedule with
methodology been used

 S. No.

Period
No.

Topic

Regular/
Additional

Teaching aids
used PPT/
OHP/ BB

 Remarks

 UNIT-I

1

1

Introduction Extreme
Programming (XP) - Agile
Development Why Agile -
Understanding Success

Regular

PPT

Online classes on
MS Teams

Online class

2

2

, Beyond Deadlines,
Importance of
Organizational Success,
Introduction to Agility

Regular

PPT

3

3

How to Be Agile - Agile
methods

Regular

PPT

4

4

Don't make your own
method, Road to mastery

Regular

PPT

5

5

, Understanding XP
(Extreme Programming) -
XP life cycle

Regular

PPT

6

6 XP team, XP Concepts,

Adopting XP

Regular

PPT

7

7

Knowing whether XP is
suitable, Implementing XP

Regular

,PPT

 assessing Agility,
Practicing XP

8

8

Thinking - Pair Programming,
Energized work

Regular

PPT

9

9

Informative Workspace, Root
cause Analysis, Retrospectives

Regular

PPT

 UNIT-II

Regular

PPT

10 10 Collaborating: Trust, Sit
together

Regular

PPT

11 11
Real customer involvement

Regular PPT

 Ubiquitous language

12 12
meetings, coding standards

Regular

PPT

13 13
Iteration demo

Regular

PPT

14 14
Reporting

Regular

PPT

Online class on MS
Teams

Online class

UNIT-III

Regular PPT

15 15
Releasing: Bugfree Release

Regular PPT

16 16
Version Control, fast build

Regular PPT

17 17
continuous integration

PPT

18 18
Collective ownership

Regular PPT

19 19
Documentation

Regular PPT

UNIT-IV

Regular

PPT

20

20 Planing: Version, Release
Plan

Regular

PPT

 Risk Management, Iteration
Planning

PPT

21 21
Slack, Stories:

Regular

PPT

22 22
Estimating

Regular PPT

UNIT-V

Regular PPT

23 23 Developing: Incremental
requirements

Regular PPT

24 24 Customer tests, Test driven
development.

 PPT

25 25 Refactoring, Incremental
design and architecture

 PPT

26 26 Spike solutions,
Performance optimization,
Exploratory testing

PPT

12. Lesson Plan & Schedule

Lesson Plan & Schedule

NAWAB SHAH ALAM KHAN COLLEGE OF ENGG & TECH

NEW MALAKPET HYDERABAD-24

Department of Information Technology

B.Tech(CSE) IVth Year Semester-II

TEACHING PLAN

Subject: Modern Software Engineering Faculty Name: Q.M.A.Basheer

S. No.

Date
Topic

Total No. of

Periods

1
 UNIT-I

2 22/3/2021
Introduction Extreme Programming (XP) - Agile
Development Why Agile - Understanding Success

1

3
23/3/2021 , Beyond Deadlines, Importance of Organizational

Success, Introduction to Agility
1

4
24/3/2021

How to Be Agile - Agile methods

1

5
29/3/2021

Don't make your own method, Road to mastery 1

6
30/3/2021 , Understanding XP (Extreme Programming) - XP

life cycle
1

7
31/3/2021

XP team, XP Concepts, Adopting XP 1

8
5/4/2021

Knowing whether XP is suitable, Implementing XP 1

9
6/4/2021

assessing Agility, Practicing XP 1

10 7/4/2021
Thinking - Pair Programming, Energized work

1

11 13/4/2021
Informative Workspace, Root cause Analysis,
Retrospectives

1

 UNIT-II

12 14/4/2021 Collaborating: Trust, Sit together 1

13 20/4/2021 Real customer involvement 1

14 27/4/2021 Ubiquitous language 1

15 28/4/2021 meetings, coding standards 1

16 03/5/2021 Iteration demo 1

17 04/5/2021 Reporting 1

 UNIT-III 1

19 10/5/2021 Releasing: Bugfree Release 1

20 11/5/2021 Version Control, fast build 1

21 12/5/2021 continuous integration 1

22 17/5/2021 Collective ownership 1

 23 18/5/2021 Documentation 1

 UNIT-IV 1

24 01/6/2021 Planing: Version, Release Plan 1

25 02/6/2021 Risk Management, Iteration Planning 1

26 07/6/2021 Slack, Stories: 1

27 08/6/2021 Estimating 1

 UNIT-V 1

28 22/6/2021 Developing: Incremental requirements 1

29 23/6/2021
Customer tests, Test driven development.

1

30 24/6/2021 Refactoring, Incremental design and architecture 1

31 25/6/2021
Spike solutions, Performance optimization,
Exploratory testing

1

13. Detailed Notes

Unit 1

Why Agile?

Agile development is popular, but that's no reason to use it.

The real question: will agile development make your team more successful?

Understanding Success
The Traditional Idea of Success is usually defined as delivering on time, under budget,
and as specified. That's a flawed definition.

Many late projects are huge successes for their organizations, and many on-time projects
don't deliver any value.

Instead, think in terms of organizational, technical, and personal success.
Agile development is no silver bullet, but it is useful.

Organizationally, agile delivers value and reduces costs;

technically, it highlights excellence and minimal bugs; personally, many find it their
preferred way to work.

Definitions of Successful, Challenged, Impaired

Successful

“Completed On Time, on Budget, With all features and Functions as originally
specified”

Challenged

“Completed and operational but over budget, over the time estimate, fewer
features and functions than originally specified”

Impaired

“Cancelled at some point during the development cycle”

Aspect of Success or Type of Success

All the above mentioned successes are important

Without personal success, you will have trouble to motivating yourself and employees.

Without technical success, your source code will eventually collapse under its own
weight.

Without organizational success, your team may find they are no longer wanted in the
company.

WHAT DO ORGANIZATIONS VALUE?

Aside from revenue and cost savings, sources of value include:
✓Competitive Differentiation
✓Brand Projection
✓Enhanced Customer loyalty
✓Satisfying regulatory requirements
✓Original Research

✓Strategic Information

Will Agile Development help you more successful?

It might.

Why because, agile development focuses on achieving
personal, technical, and organizational successes.

Organizational Success

Agile methods achieve organizational successes by focusing on delivering value and
decreasing costs. This directly translates to increased return on investment.

Agile method also sets expectations early in the project, so if your project won't be an
organizational success, you will find out early enough to cancel it before your
organization spent much money on the project.

Technical Success

XP programmers work together, which helps them keep track of the nitpicky details
necessary for great work and ensures that at least two people review every piece of
code.

Programmers continuously integrate their code, which enables the team to release the
software whenever it makes business sense.

The whole team focuses on finishing each feature completely before starting the next,
which prevents unexpected delays before release and allows the team to change
direction at will.

Personal Success
Personal success is, well, personal. Agile development may not satisfy all
of your requirements for personal success. However, once you get used
to it, you’ll probably find a lot to like about it, no matter who you are:

Executives and senior management
They will appreciate the team’s focus on providing a solid return on
investment and the software’s longevity.

Users, stakeholders, domain experts, and product managers
They will appreciate their ability to influence the direction of software
development, the team’s focus on delivering useful and valuable
software, and increased delivery frequency.

Project and product managers
They will appreciate their ability to change direction as business needs
change, the team’s ability to make and meet commitments, and improved
stakeholder satisfaction.

Developers
They will appreciate their improved quality of life resulting from
increased technical quality, greater influence over estimates and
schedules, and team autonomy.
Testers
They will appreciate their integration as first-class members of the
team, their ability to influence quality at all stages of the project,
and more challenging, less repetitious work.

How to Be Agile?

What does it mean to “be agile”?

Agile development isn’t a specific process you can follow.

No team practices the Agile method. There’s no such thing.

Agile development is a philosophy.

The canonical description of this way of thinking is the Agile
Manifesto, a collection of 4 values and 12 principles.

To “be agile,” you need to put the agile values and principles into
practice.

4 Values of Agile

12 Principles of Agile

Agile Methods

A method, or process, is a way of working.

Whenever you do something, you’re following a process.

Some processes are written, as when assembling a piece of furniture;

others are ad-hoc and informal, as when I clean my house.

Agile methods are processes that support the agile philosophy.

For Example Include Extreme Programming and Scrum.

 Don’t Make Your Own Method

Just as established agile methods combine existing practices, you
might want to create your own agile method by mixing together
practices from various agile methods.

At first glance, this doesn’t seem too hard. There are scores of good
agile practices to choose from.

However, creating a brand-new agile method is a bad idea if you’ve
never used agile development before.

The Road to Mastery

Mastering the art of agile development requires real-world
experience using a specific, well-defined agile method.

For Example: Extreme Programming for this purpose.

It has several advantages:
▪ Of all the agile methods, XP is the most complete. It places

a
strong emphasis on technical practices in addition to the more
common teamwork and structural practices.
▪ XP has undergone intense scrutiny. There are thousands of

pages
of explanations, experience reports, and critiques out there. Its
capabilities and limitations are very well understood.
▪ I have a lot of experience with XP,

which allows me to share
insights and practical tips that will help you apply XP more easily.

To master the art of agile development
or

simply to use XP to be more successful—follow these steps:

1. Decide why you want to use agile development. Will it make

your team and organization more successful? How?
2. Determine whether this book’s approach will work for your

team.
3. Adopt as many of XP’s practices as you can.
4. Follow the XP practices rigorously and consistently.
As you become confident that you are practicing XP correctly—
again, give it several months—start experimenting with changes
that aren’t “

Understanding XP

Its is a Model that that represent one method as to how
software can be developed.

XP Life Cycle

Using simultaneous phases, an XP team produces deployable software
every week.
In each iteration, the team analyzes, designs, codes, tests, and deploys a
subset of features.

XP teams perform nearly every software development activity simultaneously.
Analysis, design, coding, testing, and even deployment occur with rapid frequency.

Planning
Every XP team includes several business experts—the on-site customers—who are
responsible for making business decisions.

The on-site customers point the project in the right direction by clarifying the
project vision, creating stories, constructing a release plan, and managing risks.

Programmers provide estimates and suggestions, which are blended with customer
priorities in a process called the planning game.

Together, the team strives to create small, frequent releases that maximize value.

Analysis

Rather than using an upfront analysis phase to define requirements, on-site customers sit
with the team full-time.

On-site customers may or may not be real customers depending on the type of project, but
they are the people best qualified to determine what the software should do.

Design and coding
XP uses incremental design and architecture to continuously create and improve the design in
small steps.

This work is driven by Test-driven development (TDD), an activity that inextricably weaves
together testing, coding, design, and architecture.

To support this process, programmers work in pairs, which increases the amount of
brainpower brought to bear on each task and ensures that one person in each pair always has
time to think about larger design issues.

Programmers are also responsible for managing their development environment.

They use a version control system for configuration management and maintain their own
automated build.

Programmers integrate their code every few hours and ensure that every integration is
technically capable of deployment.

To support this effort, programmers also maintain coding standards and share ownership of
the code. The team shares a joint aesthetic for the code, and everyone is expected to fix
problems in the code regardless of who wrote it.

Testing

XP includes a sophisticated suite of testing practices.

testers help the team understand whether their efforts are in fact producing high
quality code.

They use exploratory testing to look for surprises and gaps in the software.

When the testers find a bug, the team conducts root-cause analysis and considers
how to improve their process to prevent similar bugs from occurring in the
future.

Testers also explore the software’s nonfunctional characteristics, such as
performance and stability.

Customers then use this information to decide whether to create additional
stories.

Deployment

XP teams keep their software ready to deploy at the end of any
iteration. They deploy the software to internal stakeholders every
week in preparation for the weekly iteration demo.

Deployment to real customers is scheduled according to business
needs.

The XP Team

Team software development is different. The same information is spread out among many

members of the team.

Different people know:

• How to design and program the software (programmers, designers, and architects)

• Why the software is important (product manager)

• The rules the software should follow (domain experts)

• How the software should behave (interaction designers)

• How the user interface should look (graphic designers)

• Where defects are likely to hide (testers)

• How to interact with the rest of the company (project manager)

• Where to improve work habits (coach)

All of this knowledge is necessary for success. XP acknowledges this reality by creating cross

functional teams composed of diverse people who can fulfill all the team’s roles.

On-Site Customers

On-site customers—often just called customers—are responsible for defining the software

the team builds.

→ The rest of the team can and should contribute suggestions and ideas, but the customers

are ultimately responsible for determining what stakeholders find valuable.

→ Customers’ most important activity is release planning. This is a multifaceted activity.

→ Customers need to evangelize the project’s vision; identify features and stories; determine

how to group features into small, frequent releases; manage risks; and create an achievable

plan by coordinating with programmers and playing the planning game.

→On-site customers may or may not be real customers, depending on the type of project.

→ Regardless, customers are responsible for refining their plans by soliciting feedback from

real customers and other stakeholders. One of the venues for this feedback is the weekly

iteration demo, which customers lead.

The product manager (aka product owner)

The product manager has only one job on an XP project, but it’s a doozy.

Domain experts (aka subject matter experts)

→ Most software operates in a particular industry, such as finance, that has its own

specialized rules for doing business.

→ To succeed in that industry, the software must implement those rules faithfully and

exactly.

→ These rules are domain rules, and knowledge of these rules is domain knowledge.

→ Most programmers have gaps in their domain knowledge, even if they’ve worked in an

industry for years. In many cases, the industry itself doesn’t clearly define all its rules.

→ The basics may be clear, but there are nitpicky details where domain rules are implicit or

even contradictory.

Interaction designers

The user interface is the public face of the product. For many users, the UI is the product.

They judge the product’s quality solely on their perception of the UI.

Business analysts

On non agile teams, business analysts typically act as liaisons between the customers and

developers, by clarifying and refining customer needs into a functional requirements

specification.

Programmers

A great product vision requires solid execution. The bulk of the XP team consists of

software developers in a variety of specialties. Each of these developers contributes directly

to creating working code. To emphasize this, XP calls all developers programmers.

Designers and architects

Everybody codes on an XP team, and everybody designs. Test-driven development

combines design, tests, and coding into a single, ongoing activity.

Expert designers and architects are still necessary. They contribute by guiding the team’s

incremental design and architecture efforts and by helping team members see ways of

simplifying complex designs. They act as peers—that is, as programmers—rather than

teachers, guiding rather than dictating.

Technical specialists

In addition to the obvious titles (programmer, developer, software engineer), the XP

“programmer” role includes other software development roles. The programmers could

include a database designer, a security expert, or a network architect. XP programmers are

generalizing specialists.

XP Core Practice #1- The Planning Game

• Business and development cooperate to produce max business value as

quickly as possible.
• The planning game:

– Business comes up with a list of desired features.

– Each feature is written out as a User Story,
• feature has a name, and is described in broad strokes what is required.

– User stories are typically written on 4x6 cards. (You saw a variation in your

book)

– Development estimates how much effort each story will take, and how much
effort the team can produce in a given time interval.

– Business then decides

• order of stories to implement,
• And when and how often to produce a production release of the system.

XP – Core Practice #2: Simple Design

• Simplest possible design to get job done.

• Requirements will change tomorrow, do what's needed
to meet today's requirements

• Design in XP is not a one-time; it is an “all-the-time”
activity. Have design steps in

– release planning

– iteration planning,

– teams engage in quick design sessions and design revisions
through refactoring,

• through the course of the entire project.

XP – Core Practice #3: Metaphor

• Extreme Programming teams develop a common vision of how the

program works, which we call the "metaphor".

• At its best, the metaphor is a simple evocative description of how

the program works.

• XP teams use
• common system of names to be sure that everyone understands

how the system works
• and where to look to find the functionality you're looking for,
• or to find the right place to put the functionality you're about to

add.

Metaphor

•Metaphor is something you start using when your mother asks what you are
working on and you try to explain her the details. How you find it is very project-
specific. Use your common sense or find the guy on your team who is good at
explaining technical things to customers in a way that is easy to understand.

•What XP suggests in my opinion are the following:

• Try to design a system that is easy to explain using real-life analogies. Your
systems are complex, try to use a design, where the relationship and
interactions between sub-components are clear and resemble something that
people with common sense have already seen.

• Use the analogies in all communications: source-code, planning meetings,

speaking to users, or God forsake, writing documentation. If you find that the
concepts you use do not fit to some area, try to find a better metaphor. (Wiki)

XP – Core Practice #4:
Simple Design

• Always use the simplest possible design that gets the job done.

• The requirements will change tomorrow, so only do what’s
needed to meet today’s requirements.

XP – Core Practice #5: Continuous Testing

• XP teams focus on validation of the software at all
times

• Programmers develop software by writing tests

first, and then code that fulfills the requirements
reflected in the tests.

• Customers provide acceptance tests that enable

them to be certain that the features they need are
provided.

・ Testing is central to XP and XP has developed an
approach where the program is tested after every
change has been made.

・ XP testing features:
・Test-first development.
・Incremental test development from scenarios.
・User involvement in test development and validation.

・Automated test harnesses are used to run all component tests
each time that a new release is built.

Chapter 3 Agile software
 28

development

Testing in XP

・ Writing tests before code clarifies the requirements to be
implemented.

・ Tests are written as programs rather than data so that

they can be executed automatically. The test includes a
check that it has executed correctly.
・Usually relies on a testing framework such as Junit.

・ All previous and new tests are run automatically when
new functionality is added, thus checking that the new
functionality has not introduced errors.

Chapter 3 Agile software
 29

development

Test-First Development

・ The role of the customer in the testing process is to help

develop acceptance tests for the stories that are to be
implemented in the next release of the system.

・ The customer who is part of the team writes tests as
development proceeds. All new code is therefore
validated to ensure that it is what the customer needs.

・ However, people adopting the customer role have limited
time available and so cannot work full-time with the
development team. They may feel that providing the
requirements was enough of a contribution and so may
be reluctant to get involved in the testing process.

Chapter 3 Agile software
 30

development

Customer Involvement

Chapter 3 Agile software
 31

development

Test case Description for Dose Checking

・ Test automation means that tests are written as
executable components before the task is
implemented
・These testing components should be stand-alone, should simulate

the submission of input to be tested and should check that the result
meets the output specification. An automated test framework (e.g.
Junit) is a system that makes it easy to write executable tests and
submit a set of tests for execution.

・ As testing is automated, there is always a set of tests
that can be quickly and easily executed
・Whenever any functionality is added to the system, the tests can be

run and problems that the new code has introduced can be caught
immediately.

Chapter 3 Agile software
 32

development

Test Automation

・ Programmers prefer programming to testing and

sometimes they take short cuts when writing tests.

・ For example, they may write incomplete tests that
do

• not check for all possible exceptions that may occur.

・ Some tests can be very difficult to write incrementally.
For example, in a complex user interface, it is

often difficult to write unit tests for the code that
implements the ‘display logic’ and workflow
between screens.

・ It difficult to judge the completeness of a set of tests.
Although you may have a lot of system tests, your test set
may not provide coCmhapptleert3eAcgoilevesorfatwgaere. 33

development

XP Testing Difficulties

・ Conventional wisdom in software engineering is to
design for change.

・ It is worth spending time and effort anticipating
changes as this reduces costs later in the life cycle.

・ XP, however, maintains that this is not worthwhile as
changes cannot be reliably anticipated.

・ Rather, it proposes constant code improvement
(refactoring) to make changes easier when they have to
be implemented.

Chapter 3 Agile software
 23

development

XP and Change

XP – Core Practice #6: Refactoring

• XP Team Refactor out any duplicate code

generated in a coding session.

• Refactoring is simplified due to extensive use

of automated test cases.

・ Programming team look for possible software
improvements and make these improvements even
where there is no immediate need for them.

・ This improves the understandability of the software and
so reduces the need for documentation.

・ Changes are easier to make because the code is well-
structured and clear.

・ However, some changes requires architecture
refactoring and this is much more expensive.

Chapter 3 Agile software
 24

development

Refactoring

・ Re-organization of a class hierarchy to remove duplicate code.

・ Tidying up and renaming attributes and methods to make them
easier to understand.

・ The replacement of inline code with calls to methods that have
been included in a program library.

Chapter 3 Agile software
 25

development

Examples of Refactoring

XP – Core Practice #7: Pair Programming

• All production code is written by two programmers sitting at one
machine.
– This practice ensures that all code is reviewed as it is written and results

in better Design, testing and better code.

• Some programmers object to pair programming without ever trying

it.
– It does take some practice to do well, and you need to do it well for a

few weeks to see the results.
– Ninety percent of programmers who learn pair programming prefer it, so

it is recommended to all teams.
• Pairing, in addition to providing better code and tests, also serves

to communicate knowledge throughout the team.

・ In XP, programmers work in pairs, sitting together to develop
code.

・ This helps develop common ownership of code and spreads
knowledge across the team.

・ It serves as an informal review process as each line of code is
looked at by more than 1 person.

・ It encourages refactoring as the whole team can benefit from
this.

・ Measurements suggest that development productivity with pair
programming is similar to that of two people working
independently.

Chapter 3 Agile software
 34

development

Pair Programming

・ In pair programming, programmers sit together at the same

workstation to develop the software.

・ Pairs are created dynamically so that all team members work
with each other during the development process.

・ The sharing of knowledge that happens during pair
programming is very important as it reduces the overall risks
to a project when team members leave.

・ Pair programming is not necessarily inefficient and there is
evidence that a pair working together is more efficient than 2
programmers working separately.

Chapter 3 Agile software
 35

development

Pair Programming

・ It supports the idea of collective ownership and responsibility

for the system.
・Individuals are not held responsible for problems with the code. Instead,

the team has collective responsibility for resolving these problems.

・ It acts as an informal review process because each line of code
is looked at by at least two people.

・ It helps support refactoring, which is a process of software
improvement.
・Where pair programming and collective ownership are used, others

benefit immediately from the refactoring so they are likely to support
the process.

Chapter 3 Agile software
 36

development

Advantages of Pair Programming

XP – Core Practice #8: Collective Code
Ownership

• No single person "owns" a module.

• Any developer is expected to be able to work

on any part of the codebase at any time.

XP – Core Practice #9:
Continuous Integration

• All changes are integrated into the codebase at least daily.
• Unit tests have to run 100% both before and after integration.

– Infrequent integration leads to serious problems on a project.

• Although integration is critical to shipping good working code, the team is not
practiced at it, and often it is delegated to people not familiar with the whole
system.

• Problems creep in at integration time that are not detected by any of the testing

that takes place on an un-integrated system.

• Code freezes mean that you have long time periods when the programmers could

be working on important shippable features, but that those features must be held
back.

XP – Core Practice #10: 40-hour Week

• Programmers go home on time.
– In crunch mode, up to one week of overtime is

allowed.

• Multiple consecutive weeks of overtime are
treated as a sign that something is very wrong
with the process and/or schedule.

XP – Core Practice #11: On-Site Customer

• Development team has continuous access to
the customer who will actually be using the
system.

• For initiatives with lots of customers, a
customer representative (i.e. Product
Manager) will be designated for Development
team access.

XP – Core Practice #12: Coding Standards

• Everyone codes to the same standards.

• The specifics of the standard are not important:

what is important is that all of the code looks
familiar, in support of collective ownership.

XP Values – Summarized.

• XP is a values-based methodology. The values
are Simplicity, Communication, Feedback and
Courage.

• XP’s core values:best summarized in the

following statement by Kent Beck: Do more of
what works and do less of what doesn’t.

Highlights of the four values itemized:

• Simplicity encourages:

– Delivering the simplest functionality that meets business
needs

– Designing the simplest software that supports the needed

functionality

– Building for today and not for tomorrow

– Writing code that is easy to read, understand, maintain

and modify

Highlights of the four values itemized:

• Communication is accomplished by:

– Collaborative workspaces
– Co-location of development and business space
– Paired development
– Frequently changing pair partners
– Frequently changing assignments
– Public status displays
– Short standup meetings
– Unit tests, demos and oral communication, not documentation

Highlights of the four values itemized:

• Feedback is provided by:

– Aggressive iterative and incremental releases

– Frequent releases to end users

– Co-location with end users

– Automated unit tests

– Automated functional tests

– Courage is required to:
• Do the right thing in the face of opposition

• Do the practices required to succeed

SCRUM

• Idea first appeared in a business journal in
1986 (applied to product development
management).

• Used in software development and presented
in 1995 paper.

• Term is based on rugby term

• Small cross-functional teams

SCRUM Practices

• Product and release backlog
– A list of the features to be implemented in the

project (subdivided to next release), ordered by
priority

– Can adjust over time as needed, based on feedback

– A product manager is responsible for maintaining

SCRUM Practices

• Burn-down chart
– Make best estimate of time to complete what is

currently in the backlog
– Plot the time on a chart
– By studying chart, understand how team functions
– Ensure burndown to 0 at completion date

• By adjusting what’s in the backlog
• By adjusting the completion date

SCRUM Practices

• The sprint
– The sprint is a ~1 month period after which some product is delivered
– Features are assigned from the product backlog to a sprint backlog

• Features divided into smaller tasks for sprint backlog
• Feature list is fixed for sprint

– Planning meeting
• Tasks can be assigned to team members
• Team members have individual estimates of time taken per item

– During sprint, work through features, and keep a burn-down chart for
the sprint

– New functionality is produced by the end of the sprint
– After sprint, a review meeting is held to evaluate the sprint

SCRUM Practices

• Scrum meeting
– 15 minute daily meeting

– All team members show up

– Quickly mention what they did since last Scrum, any
obstacles encountered, and what they will do next

– Some team member volunteers or is appointed to be the
Scrum Master - in charge of Scrum meeting, and
responsible for seeing that issues raised get addressed

– Customers, management encouraged to observe

24 hours

Scrum
Meeting

30 days

SCRUM Practices

Release
Backlog

Sprint
Backlog

Begin
Sprint End

Sprint

Product
Backlog

Sprint
Retrospective

Sprint
Plan

New
Functionality

Collaborating

Collaborating

• The more effectively a programmer can access and understand the
information they need , the more effective they will be at creating
software

• The better information customers and managers have the better they
can manage the schedule and provide feedback to the programmers

• Eight practices to help your team and it’s stakeholders collaborate
efficiently and effectively

➢Trust
➢Sitting together
➢Real customer involvement

Contd…….

➢Ubiquitous language
➢Stand up meetings
➢Coding standards
➢Iteration demo

➢Reporting

Trust

• We work together effectively and with out fear
• Trust is essential for a team to perform
• You need to trust that taking time to help others won’t make you look
unproductive

• You need to trust that you’ll be treated with respect when you ask for
help or disagree with someone

Team Strategy1: Customer‐ Programmer
Empathy
• Customer often feel that programmers don’t care about their needs
and deadlines

• Programmers are forced to commitments they can’t meet
• Customers react by ignoring programmer estimates and applying
schedule pressure

• The biggest missing component is empathy for other group
• Sitting together is the most effective way to build empathy

Team Strategy 2: Programmer –Tester
Empathy
• Programmers does not show respect for the testers abilities
• Testers see their mission as shooting down the programmers work
• The component missing here is empathy
• Programmers should remember that testing takes skill and careful
work

• Take advantage of testers ability to find mistakes you would never
consider and thank them for helping prevent problems

Team Strategy 3: Eat Together

• Another way to improve team cohesiveness is to eat together
• Try providing a free meal once per week
• If you have the meal brought into the office set a table and serve the
food family style

• If you go to restaurant ask for a single long table rather than a
separate table

Team Strategy 4:Team Continuity

• After a project ends the team typically breaks up
• The next project starts with a brand new team
• You can avoid this waste by keeping productive team
• Most organization think of people as basic resource in the company
instead of that think of the team as a resource

• Rather than assigning people to a project assign a team to a project
• Some teams will be more effective than others
• Rotate junior members into those teams so that they can learn from
the best, rotate experienced team members out to lead teams of
their own

Organizational Strategy 1: Show some hustle

• In software team hustle is energised, productive work
• It is the sense that the team is putting in a fair days work for a fair
days pay

• Energised work , an informative workspace , appropriate reporting
and iteration demos help convey this feeling of productivity

Organizational Strategy 2: Deliver on
Commitments
• Stake holders may not know how to evaluate your process , but they
can evaluate results

• 2 kinds of result that speak to them are working software and
delivering on commitments

• XP team demonstrate both of this every week
• You make a commitment to deliver the working software when you
build your iteration and release plans

• You demonstrate that you’ve met the iteration commitment in
iteration demo and release commitment on your predefined release
date

Organizational Strategy 3: Manage Problems

• First limit your exposure to problems
• Work on the hardest , most uncertain tasks early in the iteration
• When you encounter a problem start by letting the whole team know
about it

• Bring it up by the next stand up meeting at the very latest
• This gives the entire team a chance to help solve the problem
• If the bug is small , you might be able to solve it in iteration slack
• Or else you can go for no critical refactoring, postponing a non
essential meeting or even cancelling research time

Contd……

• We can also work n hour or so longer each day until it is resolved
• If the problem is big enough then bring that into stakeholders
attention and product manger is the best person to decide who to
talk and when

• Suppose you need a few more hours to finish a valuable story a little
bit of overtime is fine

Organizational Strategy 4: Respect Customer
goals
• When XP team first form, the programmers , customers often see
themselves as separate group

• When we start a project programmers should make an extra effort to
welcome the customers

• One way to do so is to treat customer goals with respect
• Another way is to come up with creative alternatives for meeting
customer goals

Organizational Strategy 5: Promote the team

• You can also promote your team
• One team posted pictures and charts on the outer wall of workspace
that showed what they were working on and how it was progressing

• Another team invited anyone and everyone in the company to attend
their iteration demos

Organizational Strategy 6: Be Honest

• Be honest to stakeholders
• Don’t do any fraud – inform about all the problems your are facing in
the project to stake holders if you are not able to stick in to the
schedule

Sit Together

• We communicate rapidly and accurately
• Compared to teleconferences face to face conversations will be good
➢Accommodating Poor Communication
• As the distance between people grows the effectiveness of their
communication decreases

• Misunderstanding occur and delays creep in
• To combat this problem most development methods attempt to reduce the
need for direct communication

• The primary tool team use to reduce direct communication are
development phase and work in progress document

• It’s sensible idea but it has flaws. It’s hard and impossible to anticipate all
possible questions

A better way

• In XP, the whole team including experts in business, design ,
programming and testing sit together in open workspace

• When you have a question you need only turn your head and ask
• You get an instant response and if something isn’t clear , you can
discuss it at the whiteboard

Exploiting Great Communication

• Sitting together eliminates the waste caused by waiting for an answer
which improves productivity

• In XP a team spends far greater percentage of their time
programming

• Teams that sit together not only get rapid answers , they experience
what calls osmotic communication

• It helps team jell and breaks down us versus them attitude between
groups

Secrets of Sitting Together

• Make sure that you have a complete team. If product manager fails in
attending meeting in his place you can ask domain expert to answer
the questions

• Sit close enough to each other so that you can have a quick discussion
without greeting up from the desk

• In pair programming if we interrupt a team who is busy with the work
the programmer will not be interrupted, the narrator will think and
give the answer

Making Room

• Sitting together is easy to say and hard to do
• We have to find space for that
• A team that sits in adjacent cubicle can convert them into an
adjacent shared workspace

• But even with cubicle it takes time and money to rearrange the wall
• Meanwhile we can use a big conference room as an alternative

Designing Your workspace

• Make sure there is a good sound insulation between your team workspace
and rest of the organization

• Programmers should sit next to each other because they collaborate
moment to moment

• Testers should be nearby so programmers can over hear them talk about
issues

• Domain experts and interaction designers should not be quite so close, but
should be close enough to answer questions without shouting

• Be sure that everyone has a space they can call their own. So also you need
some cubes away from open space, so that people can have privacy for
personal phone calls and individual meetings

Contd……

• In workspace include plenty of white boards and wall space for an
informative workspace

• You can also have a projector in workspace
• The center of XP workspace should be a set of pairing stations
• Provide extra pair stations which can be used by testers and
customers to pair

Adopting an open workspace

• Some team members resist moving to an open workspace
• Common concerns are loss of individuality and privacy
• Team members worry about distractions and noise
• Talk to your team members before going to an open workspace
• Try to discuss the advantage and benefits of it. If most of them
disagree for it then leave that idea else go for it

Real Customer Involvement

• We understand the goals and frustrations of our customers and end
users

• In XP team on‐site customers are responsible for choosing and
prioritising features

• The value of the project is in their hands
• The onsite customers can be real customers also

Personal Development

• In personal development the development team is its own customers
• They are developing software for their own use
• Here there is no need to involve external customer

In‐House Custom Development

• In house custom development occurs when your organization asks
your team to build something for the organization own use

• In this environment team has multiple customers to serve: the
executive sponsor who pays for the software and end users who use
the software

• In this environment make executive sponsor as product manager and
some end users as domain experts

Outsourced Custom Development

• The software will be outsourced to some other agencies
• In this case the real customer cannot act as on‐site customer
• One way to recruit on‐site customer is to move your team to customer
office

• If you can’t being real customers onto your team make effort to meet them
in person for the first week or two of the project

• If you’re located near each other meet again for each iteration demo ,
retrospectives and planning session

• If you are far stay in touch with instant messaging and phone conferences
• Try to meet monthly once. If it is not feasible try meeting atleast once per
release

Vertical Market Software

• Vertical market software is developed for many organizations
• Like custom development , it’s built for a particular industry and it’s
often customised for each customer

• Vertical market software has multiple customers
• Your organization can appoint products manager who can understand
the needs of real customer

• His job is to take into account all your real customers needs and
combine them into single compelling vision

• You can also ask your customers to provide end users to join your
team as onsite domain experts

Horizontal Market Software

• Horizontal market software is software that’s intended to be used
across a wide range of industries

• Here also you can go for in house product manager
• To involve customer you can create focus groups , user experience
testing, community previews, beta release etc

Ubiquitous Language

• We understand each other
➢The Domain Expertise Conundrum
• One challenge of professional software development is that programmers
aren’t necessarily experts in the area for which they write software

• The people who are experts in the problem domain – the domain experts
are rarely qualified to write software

• The people who are qualified to write software – the programmers –don’t
always understand the problem domain

• The challenge here is communicating the information clearly and
accurately

Two Languages

• Imagine you are driving to a job interview and your friend is guiding
the way through map

• You will be talking about what you see in road and your friend will be
talking about what he is seeing in map

• So you both are speaking two languages
• This will happen in case of programmers and domain experts
• So you have to pick one language for the whole team to communicate
i.e ubiquitous language

How to speak the same language

• Programmers should speak the language of their domain experts
• Use domain terms instead of technical terms
• So both will understand and there will not be any misunderstanding

Ubiquitous language in code

• As programmer , it will be tough for you to speak language of domain
expert

• Better approach to do it is you use your thr language of domain
• You can name your classes, methods and variables anything the terms
thr domain expert use

• One powerful way to design your application to speak the language of
the domain is to create a domain model

14. Additional topics beyond the
syllabus

Not covered due to less time and pandemic.

15. University Question papers of
previous years

16. Question bank, Unit wise Quiz
Questions

1. We have a configuration management (CM) department that’s responsible for maintaining our builds.
2. The ultimate goal of continuous integration is to be able to deploy all but the last few hours of work at any

time.
3. There’s a lively community of open-source continuous integration servers (also called CI servers).

4. Synchronous integration reduces integration problems.

5. Collective code ownership spreads responsibility for maintaining the code to all the
programmers. Collective code ownership is exactly what it sounds like: everyone shares
responsibility for the quality of the code. No single person claims ownership over any part of the system, and
anyone can make any necessary changes anywhere.

6. Always leave the code a little better than you found it.
7. Continuous integration decreases the chances of merge conflicts.
8. XP practices support work-in-progress communication in other ways—ways that are actually more effective

than written documentation.
9. Alistair Cockburn describes a variant of Extreme Programming called “Pretty Adventuresome Programming”:
10. Vision reveals where the project is going and why it’s going there.
11. Release Planning provides a roadmap for reaching your destination.
12. The Planning Game combines the expertise of the whole team to create achievable plans.
13. Risk Management allows the team to make and meet long-term commitments.
14. Iteration Planning provides structure to the team’s daily activities.
15. Slack allows the team to reliably deliver results every iteration.
16. Stories form the line items in the team’s plan.
17. Estimating enables the team to predict how long its work will take.

18. One person gets a bright idea, evangelizes it, and gets approval to pursue it. This person is a visionary.

19. Frequent releases are good for the organization. Frequent releases can actually make your life easier. By

delivering tested, working, valuable software to your stakeholders regularly, you increase trust.

20. To take the most advantage of the opportunities you create, build a plan that allows you to release at any time.
At any time, you should be able to release a product that has value proportional to the investment you’ve
made.

21. Some people try to fix the release date and features. This can only end in tears; given the uncertainty and risk
of software development, making this work requires adding a huge amount of padding to your schedule,
sacrificing quality, working disastrous amounts of overtime, or all of the above.

22. “Done done” applies to release planning as well as to stories. Just as you shouldn’t postpone tasks until the
end of an iteration, don’t postpone stories until the end of a release. Every feature should be “done done”
before you start on the next feature.

23. Risk management allows you to make and meet commitments.
24. One of the hardest things about project-specific risks is remembering to follow up on them.
25. As you evaluate your risks, think about the risk to the success of the project, not just the risk to the schedule.
26. Every team member is responsible for the successful delivery of the iteration’s stories.
27. The amount of slack you need doesn’t depend on the number of problems you face.
28. One way to introduce slack into your iterations might be to schedule no work on the last day or two of your

iteration.
29. Continue refactoring new code as you write it. It’s OK to defer cleaning up existing technical debt

temporarily, but incurring new technical debt will hurt your productivity.
30. Slack is a wonderful tool. It helps you meet your commitments and gives you time to perform important,

nonurgent tasks that improve your productivity.

31. Stories are for planning. They’re simple one- or two-line descriptions of work the team should produce.
Alistair Cockburn calls them “promissory notes for future conversation.”* Everything that stakeholders want
the team to produce should have a story.

32. A good way to ensure that your stories are customer-centric is to ask your customers to write the stories
themselves.

33. Select story sizes such that you complete 4 to 10 each iteration.
34. Splitting stories is more difficult because it tempts you away from vertical stripes and releasable Stories

35. Bug stories can be difficult to estimate. Often, the biggest time sink in debugging is figuring out what’s
wrong, and you usually can’t estimate how long that will take.

36. Programmers will often use a spike solution to research the technology, so these sorts of stories are typically
called spike stories.

37. We provide reliable estimates. Programmers often consider estimating to be a black
art—one of the most difficult things they must do.

38. One reason estimating is so difficult is that programmers can rarely predict how they will spend their time. A
task that requires eight hours of uninterrupted concentration can take two or three days if the programmer
must deal with constant interruptions.

39. Although estimates are almost never accurate, they are consistently inaccurate. While the estimate accuracy of
individual estimates is all over the map—one estimate might be half the actual time, another might be 20
percent more than the actual time—the estimates are consistent in aggregate.

40. Estimate in terms of ideal engineering days (story points), not calendar time.
41. Incremental Requirements allows the team to get started while customers work out

requirements details.
42. Customer Tests help communicate tricky domain rules.

43. Test-Driven Development allows programmers to be confident that their code does what they think it should.
44. Refactoring enables programmers to improve code quality without changing its behavior.

45. Simple Design allows the design to change to support any feature request, no matter how surprising.

46. In incremental requirements we define requirements in parallel with other work.
47. Sometimes the best way to create a UI mock-up is to work in collaboration with the programmers. The

iteration-planning meeting might be the best time for this work.
48. Test-driven development, or TDD, is a rapid cycle of testing, coding, and refactoring.
49. Every few minutes, TDD provides proven code that has been tested, designed, and

coded.
50. Unit tests focus just on the class or method at hand. They run entirely in memory, which makes them very

fast. Depending on your platform, your testing tool should be able to run at least 100 unit tests per second.
51. Mock objects are a popular tool for isolating classes for unit testing.
52. A spike solution is a technical investigation. It’s a small experiment to research the

answer to a problem.
53. We optimize when there’s a proven need.
54. Performance optimizations must serve the customer’s needs.
55. Throughput : is how many operations should complete in a given period of time?
56. Latency: is how much delay is acceptable between starting and completing a single operation?

57. Responsiveness: is How much delay is acceptable between starting an operation and receiving feedback about

that operation

58. Exploratory testing can be done manually or with the assistance of automation. Its defining characteristic is
not how we drive the software but rather the tight feedback loop between test design, test execution, and
results interpretation.

59. Optimization has two major drawbacks: it often leads to complex, buggy code, and it takes time away from
delivering features. Neither is in your customer’s interests. Optimize only when it serves a real, measurable
need.

60. Performance optimization can consume an infinite amount of time.
61. Exploratory testing can be done manually or with the assistance of automation.
62. Exploratory testing works best when the software is ready to be explored— that is, when stories are “done

done.”
63. We have a configuration management (CM) department that’s responsible for maintaining our builds.
64. The ultimate goal of continuous integration is to be able to deploy all but the last few hours of work at any

time.
65. There’s a lively community of open-source continuous integration servers (also called CI servers).

66. Synchronous integration reduces integration problems.

67. Collective code ownership spreads responsibility for maintaining the code to all the
programmers. Collective code ownership is exactly what it sounds like: everyone shares
responsibility for the quality of the code. No single person claims ownership over any part of the system, and

anyone can make any necessary changes anywhere.

68. Always leave the code a little better than you found it.
69. Continuous integration decreases the chances of merge conflicts.
70. XP practices support work-in-progress communication in other ways—ways that are actually more effective

than written documentation.
71. Alistair Cockburn describes a variant of Extreme Programming called “Pretty Adventuresome Programming”:
72. Vision reveals where the project is going and why it’s going there.
73. Release Planning provides a roadmap for reaching your destination.
74. The Planning Game combines the expertise of the whole team to create achievable plans.
75. Risk Management allows the team to make and meet long-term commitments.
76. Iteration Planning provides structure to the team’s daily activities.
77. Slack allows the team to reliably deliver results every iteration.
78. Stories form the line items in the team’s plan.
79. Estimating enables the team to predict how long its work will take.

80. One person gets a bright idea, evangelizes it, and gets approval to pursue it. This person is a visionary.

81. Frequent releases are good for the organization. Frequent releases can actually make your life easier. By

delivering tested, working, valuable software to your stakeholders regularly, you increase trust.

82. To take the most advantage of the opportunities you create, build a plan that allows you to release at any time.
At any time, you should be able to release a product that has value proportional to the investment you’ve
made.

83. Some people try to fix the release date and features. This can only end in tears; given the uncertainty and risk
of software development, making this work requires adding a huge amount of padding to your schedule,
sacrificing quality, working disastrous amounts of overtime, or all of the above.

84. “Done done” applies to release planning as well as to stories. Just as you shouldn’t postpone tasks until the
end of an iteration, don’t postpone stories until the end of a release. Every feature should be “done done”
before you start on the next feature.

85. Risk management allows you to make and meet commitments.
86. One of the hardest things about project-specific risks is remembering to follow up on them.
87. As you evaluate your risks, think about the risk to the success of the project, not just the risk to the schedule.
88. Every team member is responsible for the successful delivery of the iteration’s stories.
89. The amount of slack you need doesn’t depend on the number of problems you face.
90. One way to introduce slack into your iterations might be to schedule no work on the last day or two of your

iteration.
91. Continue refactoring new code as you write it. It’s OK to defer cleaning up existing technical debt

temporarily, but incurring new technical debt will hurt your productivity.
92. Slack is a wonderful tool. It helps you meet your commitments and gives you time to perform important,

nonurgent tasks that improve your productivity.

93. Stories are for planning. They’re simple one- or two-line descriptions of work the team should produce.
Alistair Cockburn calls them “promissory notes for future conversation.”* Everything that stakeholders want
the team to produce should have a story.

94. A good way to ensure that your stories are customer-centric is to ask your customers to write the stories
themselves.

95. Select story sizes such that you complete 4 to 10 each iteration.
96. Splitting stories is more difficult because it tempts you away from vertical stripes and releasable Stories
97. Bug stories can be difficult to estimate. Often, the biggest time sink in debugging is figuring out what’s

wrong, and you usually can’t estimate how long that will take.

98. Programmers will often use a spike solution to research the technology, so these sorts of stories are typically
called spike stories.

99. We provide reliable estimates. Programmers often consider estimating to be a black
art—one of the most difficult things they must do.

100. One reason estimating is so difficult is that programmers can rarely predict how they will spend their
time. A task that requires eight hours of uninterrupted concentration can take two or three days if the
programmer must deal with constant interruptions.

101. Although estimates are almost never accurate, they are consistently inaccurate. While the estimate
accuracy of individual estimates is all over the map—one estimate might be half the actual time, another
might be 20 percent more than the actual time—the estimates are consistent in aggregate.

102. Estimate in terms of ideal engineering days (story points), not calendar time.
103. Incremental Requirements allows the team to get started while customers work out requirements

details.
104. Customer Tests help communicate tricky domain rules.

105. Test-Driven Development allows programmers to be confident that their code does what they think it should.
106. Refactoring enables programmers to improve code quality without changing its behavior.

107. Simple Design allows the design to change to support any feature request, no matter how surprising.

108. In incremental requirements we define requirements in parallel with other work.
109. Sometimes the best way to create a UI mock-up is to work in collaboration with the programmers. The

iteration-planning meeting might be the best time for this work.
110. Test-driven development, or TDD, is a rapid cycle of testing, coding, and refactoring.
111. Every few minutes, TDD provides proven code that has been tested, designed, and

coded.
112. Unit tests focus just on the class or method at hand. They run entirely in memory, which makes them

very fast. Depending on your platform, your testing tool should be able to run at least 100 unit tests per
second.

113. Mock objects are a popular tool for isolating classes for unit testing.
114. A spike solution is a technical investigation. It’s a small experiment to research the answer to a

problem.
115. We optimize when there’s a proven need.
116. Performance optimizations must serve the customer’s needs.
117. Throughput : is how many operations should complete in a given period of time?
118. Latency: is how much delay is acceptable between starting and completing a single operation?

119. Responsiveness: is How much delay is acceptable between starting an operation and receiving

feedback about that operation

120. Exploratory testing can be done manually or with the assistance of automation. Its defining
characteristic is not how we drive the software but rather the tight feedback loop between test design, test
execution, and results interpretation.

121. Optimization has two major drawbacks: it often leads to complex, buggy code, and it takes time away
from delivering features. Neither is in your customer’s interests. Optimize only when it serves a real,
measurable need.

122. Performance optimization can consume an infinite amount of time.
123. Exploratory testing can be done manually or with the assistance of automation.
124. Exploratory testing works best when the software is ready to be explored— that is, when stories are

“done done.”

DESCRIPTIVE QUESTIONS:
UNIT-I
Short Answer Questions-

S.NO QUESTION BLOOMS Taxonomy
1. Define: Successful, Challenged, Impaired L1: REMEMBER
2. Define : Method and Agile Method, Refactoring L1: REMEMBER
3. What is Iteration Planning? L1: REMEMBER
4. What is the Role of Onsite Customers? L1: REMEMBER
5. What is the role of Product Manager? L1: REMEMBER
6. What is Time Boxing, Iteration, and Velocity? L1: REMEMBER
7. How to energies the work in Agile L1: REMEMBER
8. Define Informative Workspace L1: REMEMBER
9. What is Root - Cause Analysis? L1: REMEMBER

 10. Define Retrospectives L1: REMEMBER
Long Answer Questions-
S.NO QUESTION BLOOMS Taxonomy

1. Explain in detail about Organization, Technical, Personal L2:UNDERSTAND
2. Explain the Principles of Agile Development L2:UNDERSTAND
3. Distinguish Traditional S/w Life cycle and Agile Life Cyle L4:ANALYZING
4. Explain the pre-requisite of adopting the XP[Extreme

Programming] L2:UNDERSTAND

5. Explain the Assessment of Agility L2:UNDERSTAND
6. Explain the Tips for pairing L2:UNDERSTAND
7. Explain the process improvement chart with examples L2:UNDERSTAND
8. Explain in detail about root-cause analysis L2:UNDERSTAND

UNIT-2
Short Answer Questions
S.NO QUESTION BLOOMS Taxonomy

1. What are the 8 peaches that help a team and its stakeholder
collaborate? L1: REMEMBER

2. What do you mean by collaborating? L1: REMEMBER
3. What is the group dynamics involved when people work

through team?
L1: REMEMBER

4. What are stand up meeting? L1: REMEMBER
5. What do you mean by coding standards? L1: REMEMBER

Long Answer Questions-
S.NO QUESTION BLOOMS Taxonomy

1. Explain the steps involved in collaborating L2:UNDERSTAND
2. Elaborate the strategies for generating trust L6: CREATE
3. Discuss in detail about the organizational strategies for

maintain impressions.
L6: CREATE

4. Criticize the daily stand up meeting L5:Evaluate
5. Demonstrate the Iteration Demo Process L2:UNDERSTAND

UNIT-3
Short Answer Questions-
S.NO QUESTION BLOOMS Taxonomy

1. Define Releasing. L1: REMEMBER
2. How to release No bug software? L1: REMEMBER
3. Define Version Control and list the terminologies used in it. L1: REMEMBER
4. Define Releasing Documentation. L1: REMEMBER
5. Compare the build a project and automate the build L5:EVALUATE

Long Answer Questions-
S.NO QUESTION BLOOMS Taxonomy

1. Explain in detail of production - Ready software L2:UNDERSTAND
2. Illustrate how to achieve nearly zero bugs. L2:UNDERSTAND
3. Explain in detail about continuous integration L2:UNDERSTAND
4. Demonstrate collective code ownership L2:UNDERSTAND
5. Examine the Documentation L4:ANALYZING

UNIT-4

Short Answer Questions-
S.NO QUESTION BLOOMS Taxonomy

1. What is product vision and how to identify the vision? L1: REMEMBER
2. Distinguish release early and release often L6: CREATE
3. What do you mean my adaptive planning? L1: REMEMBER
4. Define Risk Management L1: REMEMBER
5. Assess the iteration planning L5:EVALUATE

Long Answer Questions-
S.NO QUESTION BLOOMS Taxonomy

1. Discuss the vision statement & promote it to stakeholder L6: CREATE
2. Explain the method to create a release plan L2:UNDERSTAND
3. Design the strategy for Game and Play to win L6: CREATE
4. Discuss how can we make a release commitment? L6: CREATE
5. Explain in detail about estimation and velocity L2:UNDERSTAND

UNIT-5

Short Answer Questions-
S.NO QUESTION BLOOMS Taxonomy

1. Define Customer Review Questions L1: REMEMBER
2. What do you mean by Multiple name / Value pair? L1: REMEMBER
3. What is unit test? L1: REMEMBER
4. Define refactoring L1: REMEMBER
5. What do you mean by Risk - Driven Architecture L1: REMEMBER

Long Answer Questions-
S.NO QUESTION BLOOMS Taxonomy

1. Explain in detail about customer Test L2:UNDERSTAND
2. Explain in detail about customer TDD L2:UNDERSTAND

3. Write short notes on
(i) Focused Integration Test
(ii) End to End Test

L2:UNDERSTAND

4. Discuss the Effective Designing L6: CREATE
5. Explain in detail about Incremental design and Architecture L2:UNDERSTAND

OBJECTIVE & FILL IN THE BLANKS QUESTIONS
UNIT -1
1)------------------Appreciate the team’s focus on providing a solid return on investment and
 the software’s longevity.
a) Users b) stakeholders c) domain expert d) domain experts
2. ------------will appreciate their ability to change direction as business needs change, the
 team’s ability to make and meet commitments, and improved stakeholder satisfaction.
a) Users b) project managers c) domain expert
3. ------------will appreciate their integration as first-class members of the team, their ability
 to influence quality at all stages of the project, and more challenging, less repetitious
 work.
a) Testers b) project managers c) domain expert
4. -----------help the team work with the rest of the organization. They are usually good at
 coaching nonprogramming practices
a) Testers b) project managers c) project engineer d) domain experts
5. ---------------is the visible tip of the software development iceberg.
a)Horizontal-market software b)web based software c)both d)none

Fill in the blanks
1. User requirements are expressed as ------------------ in Extreme Programming
2. Tests are automated in Extreme Programming.---------------------.
3. Developers work individually on a release and they compare their results with other
 developers before forwarding that release to customers.
4. In XP Increments are delivered to customers every _______ weeks.
5. How many documents in the vision statement --------------

Answers : fill in the blanks Answers
1. Scenario 2.True 3.false 4.2 Weeks 5.Three

UNIT -2

1----------------is essential for the team to thrive.
a)Trust b)sitting c)involvement d)language
2------------------ together leads to fast, accurate communication.
a)Trust b)sitting c)involvement d)language
3. -------------------helps the team understand what to build.
a) Real customer involvement b) sitting c)involvement d)language

4) A --------------------language helps team members understand each other.
a)c language b) ubiquitous c)involvement d)language
5. ----------standards provide a template for seamlessly joining the team’s work together.
a)coding b)testing c)design d)SRS

Fill in the blanks

1. In software engineering, defects that are discovered ______ are ______ to fix
2.-----------------------is called as agile model
3.--------------------- helps reassure the organization that the team is working well.
4.-------------------------- keep the team’s efforts aligned with stakeholder goals
5.------------- provide high-level information that allows management to analyze trends

and set goals
Answers:
1)later; more expensive 2. Customer collaboration over contract negotiation
3) Reporting 4) Iteration 5)management reports

UNIT -3
1. Select the option that suits the Manifesto for Agile Software Development

a) Individuals and interactions
b) Working software
c) Customer collaboration
d) All of the mentioned

2. Agile Software Development is based on
a) Incremental Development
b) Iterative Development
c) Linear Development
d) Both Incremental and Iterative Development

3. How many phases are there in Scrum ?
a) Two
b) Three
c) Four
d) Scrum is an agile method which means it does not have phases

4. How is plan driven development different from agile development ?
a) Outputs are decided through a process of negotiation during the software development
process
b) Specification, design, implementation and testing are interleaved
c) Iteration occurs within activities
d) All of the mentioned

5. Which of the following does not apply to agility to a software process?
a) Uses incremental product delivery strategy
b) Only essential work products are produced
c) Eliminate the use of project planning and testing
d) All of the mentioned

Fill in the blanks
1In agile development it is more important to build software that meets the customers’ needs
 today than worry about features that might be needed in the future is ------------
2. ----- test do you infer from the following statement: “The coordination and data
 management functions of the server are tested.”?
3. A client is assigned all user presentation tasks and the processes associated with data
 entry”. Which option supports the client’s situation-------------?
4) --------------enables a software engineer to defined screen layout rapidly for interactive
 applications.
5. --------------------tools are used to modify online database systems

Answers fill in the blanks

1. True 2.Server test 3.Distributed logic 4.Screen painter’s 5.online reengineering
tools

UNIT 4
1. ------------------- is not a conflict in software development team?
a) Simultaneous updates

b) Shared and common code
c) Versions
d) Graphics issues

2. Which of the following is not a typical environment in communication facilitation?
a) Multiple teams
b) Multiple user groups
c) Multiple fests
d) Multiple locations
3. Which of the following is not a part of Software Configuration Management Basics?
a) Identification
b) Version
c) Auditing and Reviewing
d) Status Accounting
4. What is one or more software configuration items that have been formally reviewed and
agreed upon and serve as a basis for further development?
a) Configuration
b) Baseline
c) Software
d) All of the mentioned
5. Why is software difficult to build ?
a) Controlled changes
b) Lack of reusability
c) Lack of monitoring
d) All of the mentioned

Fill in the blanks:
1) ------------------ is a specific instance of a baseline or configuration item?
2. ITG stands for-----------------------------
3 Which one is not a software quality model?

a) ISO 9000
b) McCall model
c) Boehm model
d) ISO 9126

4. IMC Networks is a leading ________ certified manufacturer of optical networking and
 LAN/WAN connectivity solutions for enterprise, telecommunications and service
 provider applications.
5. Software reliability is defined with respect to----------------------

Answers 1.version 2.independent test group 3.IS000 4.telco systems 5.time

UNIT 5
1. The team is unable to decide whether it makes sense to buy an off-the-shelf from the

vendor or go about building it themselves. Both options have its merits and demerits. As a
Scrum Master what would be your recommendation to the team? --------------------------

a). Consult with the product owner of what he is willing to sponsor.
b) Conduct a spike to evaluate both options.
c)Do a fist of five voting.
d) None of the above.
2. ________ is a low-fidelity prototype that shows a mockup for a
set of screen, containing
 the basic layout of the different widgets on it
a)Persona
b)Wireframe
c)Spikes
d)Story map
3. If you happen to hire for a new Agile team, you should prefer:
a) Developers
b) Specialists in the technologies to be used
c)Generalists with cross-functional skillsets
d) People who exhibit adaptive leadership skill
4. During which Scrum ceremony are risk audits held?
a) Sprint planning b)Sprint execution c)Sprint review d)Sprint retrospective
5. By tracking velocity trends, a team can---------
a). Gauge the rate of progress b)Estimate how much longer it will take to
complete

c)Correcting estimation errors d) All of the above.
Fill in the blanks :
1.The pillars of Scrum are-----------and-----------------------
2. XP teams use the technique of ________ to enhance code
quality, while keeping its
 behavior unchanged.
3. During which Scrum ceremony are risk audits held?-----------------------------
4. The Y-axis of an iteration burndown chart depicts ----------------------
5. The pillars of Scrum are----------------------------
Answers
1. Transparency, Inspection 2.spikes 3.sprint execution 4.no of features to be
compleraed

5. Transparency, Inspection and Adaptation

17. Assignment Questions

Modern Software Engineering
Assignment-1

Explain about the following:

1) Agile software development
2) Principles of Agile
3) Successful, Challenged and Impaired
4) Values of Agile
5) XP lifecycle
6) Refactoring
7) Timeboxing
8) Stories
9) Agile requirements
10) Definition of Done

Modern Software Engineering
Assignment-2

1) Pair Programming
2) Mob programming
3) Test-driven development
4) Refactoring legacy code
5) Scrum and Scrum practices
6) Continuous Integration
7) Continuous Delivery
8) Real customer involvement
9) Behavior-driven development
10) Collaborating

20. Known gaps ,if any

18. Mid Wise Question Paper
including Quiz

Nawab Shah Alam Khan College of Engineering and Technology
Modern Software Engineering

B.Tech IV year I semester 2020-21
Quiz-I Date: 5-5-2021

1. ______ means effective (rapid and adaptive) response to change
2. Drawing the _______ into the team to eliminate us and them attitude.
3. ____ development emphasizes an incremental delivery strategy.
4. Agile development is also known as _____________
 5. Pair programming consists of two programmers sharing a single workstation (one
screen, keyboard and mouse among the pair). The programmer at the keyboard is usually
called the __________ the other, also actively involved in the programming task but focusing
more on overall direction is the __________.

6. ____________ is often neglected by software teams in favor of the more easily achieved
technical and personal successes.
7. First-class members of the team are
a) testers b) developers c) project managers d) stakeholders
 8. To be _______ you need to put the agile 4 values and 12 principles into practice.

9. ___________ satisfaction by early and continuous delivery of valuable software.
10. Agile development welcomes changing requirements, even in ________ development.
11. ______ is an agile software development framework that aims to produce higher quality
software, and higher quality of life for the development team. [Score]
12. Self-organization is a hallmark of ______ teams. [Score]
13________________is an activity that inextricably weaves together testing, coding, design,
and architecture. [Score]
14. _________ is the process of changing the structure of code—rephrasing it—without
changing its meaning or behavior. It’s used to improve code quality, to fight off software’s
unavoidable entropy, and to ease adding new features.
15. The best architectures, requirements and emerge from _________ team. [Score]
16. Of all the on-site customers, the ___________is likely the most important. He/ She
makes the final determination of value.

CO1

17. An ____ retrospective, or sprint retrospective as Scrum calls it, is a practice used by teams
to reflect on their way of working, and to continuously become better in what they do.
18. _______is essential for the team to thrive.
19. Sitting together leads to fast, _________ communication.
20. Real ____ involvement helps the team understand what to build.
21. A ___________ language helps team members understand each other.
22. ___ meetings keep team members informed.
23. ________ standards provide a template for seamlessly joining the teamâ€™s work
together.
24. ____________ demos keep the team’s efforts aligned with stakeholder goals.
25. ___________ helps reassure the organization that the team is working well.
26.________ continuity is an advanced practice—not because it’s hard to do, but because it

challenges normal organizational structures. While team continuity is valuable, you don’t
need to do it to be successful.
27. Adding manpower to a late software project makes it____.
28. In __________, the whole team including experts in business, design, programming, and
testing sits together in an open workspace.
29. Teams that sit together not only get rapid answers to their questions, they experience what
calls ________ communication.
30. You not only hear your name, you hear a bit of the conversation around it, too, in a
phenomenon known as the ______ party effect.
31._____________ and its language-independent cousin, function points, are common
approaches to measuring software size. Unfortunately, they are also used for measuring
productivity.
32. Measuring the variation in _______ may produce interesting information for discussion in
the retrospective, but the information is too ambiguous to report outside the team.
33. ________ shows that the more lines of code a program has, the more defects it gets.
34. More lines of code is likely to have defects and the more it will ______ to develop.
35. ______ control allows team members to work together without stepping on each others
toes.
36. __________integration prevents a long, risky integration phase.
37. A _______ or defect is any behaviour of your software that will unpleasantly surprise
important stakeholders.
38. Exploratory _______ is a very effective way of finding unexpected bugs. It’s so effective
that the rest of the team might start to get a little lazy.

39. When you produce nearly zero bugs, you are confident in the _________ of your
software.
40. ____________means delivering value to the organization.

CO2

Nawab Shah Alam Khan College of Engineering and Technology

Modern Software Engineering
B.Tech IV year I semester 2020-21

Quiz-II Date: 3-6-2021

125. We have a configuration management (CM) department that’s responsible for
maintaining our builds.

126. The ultimate goal of continuous integration is to be able to deploy
all but the last few hours of work at any time.

127. Synchronous integration reduces integration problems.
128. Continuous integration decreases the chances of merge conflicts.
129. Vision reveals where the project is going and why it’s going there.
130. Release Planning provides a roadmap for reaching your destination.
131. Risk Management allows the team to make and meet long-term commitments.
132. Iteration Planning provides structure to the team’s daily activities.
133. Slack allows the team to reliably deliver results every iteration.
134. Stories form the line items in the team’s plan.
135. Estimating enables the team to predict how long its work will take.

136. Frequent releases are good for the organization. Frequent releases can actually make

your life easier. By delivering tested, working, valuable software to your stakeholders regularly,
you increase trust.

137. “Done done” applies to release planning as well as to stories. Just as you shouldn’t
postpone tasks until the end of an iteration, don’t postpone stories until the end of a release.
Every feature should be “done done” before you start on the next feature.

138. Risk management allows you to make and meet commitments.
139. Every team member is responsible for the successful delivery of the iteration’s stories.
140. Slack is a wonderful tool. It helps you meet your commitments and gives you time to

perform important, nonurgent tasks that improve your productivity.

141. Stories are for planning. They’re simple one- or two-line descriptions of work the team
should produce. Alistair Cockburn calls them “promissory notes for future conversation.”*
Everything that stakeholders want the team to produce should have a story.

142. Bug stories can be difficult to estimate. Often, the biggest time sink in debugging is
figuring out what’s wrong, and you usually can’t estimate how long that will take.

CO3

143. Programmers will often use a spike solution to research
the technology, so these sorts of stories are typically called spike stories.

144. Estimate in terms of ideal engineering days (story points), not calendar time.
145. Incremental Requirements allows the team to get started while customers work out

requirements details.
146. Customer Tests help communicate tricky domain rules.

147. Test-Driven Development allows programmers to be confident that their code does what they
think it should.
148. Refactoring enables programmers to improve code quality without changing its

behavior.

149. Simple Design allows the design to change to support any feature request, no matter how
surprising.

150. In incremental requirements we define requirements in parallel with other work.
151. Test-driven development, or TDD, is a rapid cycle of testing, coding, and refactoring.
152. Unit tests focus just on the class or method at hand. They run entirely in memory, which

makes them very fast. Depending on your platform, your testing tool should be able to run at
least 100 unit tests per second.

153. Mock objects are a popular tool for isolating classes for unit testing.
154. A spike solution is a technical investigation. It’s a small experiment to research the

answer to a problem.
155. We optimize when there’s a proven need.
156. Performance optimizations must serve the customer’s needs.
157. Throughput : is how many operations should complete in a given period of time?
158. Latency: is how much delay is acceptable between starting and completing a single

operation?

159. Responsiveness: is How much delay is acceptable between starting an operation and
receiving feedback about that operation

160. Exploratory testing can be done manually or with the assistance of automation. Its
defining characteristic is not how we drive the software but rather the tight feedback loop
between test design, test execution, and results interpretation.

161. Optimization has two major drawbacks: it often leads to complex, buggy code, and it
takes time away from delivering features. Neither is in your customer’s interests. Optimize only
when it serves a real, measurable need.

162. Performance optimization can consume an infinite amount of time.
163. Exploratory testing can be done manually or with the assistance of automation.
164. Exploratory testing works best when the software is ready to be explored— that is, when

stories are “done done.”

CO4
&
CO5

19. Tutorial problems

None

20. Known gaps ,if any

21. Discuss topic if any

22. References, Journals,
websites and E-links if any

WEBSITES

1. http://www.agiledeveloper.com/downloads.html
2. https://www.sanfoundry.com/software-engg-mcqs-extreme-
programming/
3. http://mcqspdfs.blogspot.com/2016/06/100-top-agile-testing-multiple-
choice.html

JOURNALS
1. http://www.123seminarsonly.com/Seminar-Reports/002/50486044-
what-is-agile-

software-development.pdf
2. https://www.ijitee.org/
3. http://www.jardcs.org/

23. Attainments

24. Student List with Slow
Learners and Advance

learners

Advance Learners

1 15RT1A1235
2 16RT1A1205
3 16RT1A1229
5 17RT1A1205
6 17RT1A1206
7 17RT1A1209
8 17RT1A1210
9 17RT1A1211

10 17RT1A1218
11 17RT1A1224
12 17RT1A1228
13 17RT1A1229
14 17RT1A1230
15 17RT1A1231
16 17RT1A1233
17 17RT1A1235
18 17RT1A1236
19 17RT1A1237
20 17RT1A1238
21 17RT1A1239
22 17RT1A1240
23 17RT1A1241
24 17RT1A1242
25 17RT1A1244
26 17RT1A1245
27 17RT1A1246
28 17RT1A1250
29 17RT1A1252
30 17RT1A1254
31 17RT1A1255
32 17RT1A1257
33 17RT1A1258
34 17RT1A1259

Slow Learners

1 15RT1A1235
4 17RT1A1201

	MSE_CourseFile_Part1
	MSE_CompleteNotes
	MSE_CourseFile_Part2

