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2. SYLLABUS 

 

UNIT – I 

 Introduction to Finite Automata: Structural Representations, Automata and Complexity, the 

Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems. Nondeterministic Finite 

Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions. 

Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA, 

Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA, Moore 

and Melay machines . 

UNIT – II 

 Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular 

Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular 

Expressions. Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications of 

the Pumping Lemma. Closure Properties of Regular Languages: Closure properties of Regular languages, 

Decision Properties of Regular Languages, Equivalence and Minimization of Automata.  

UNIT - III  

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar, 

Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress, 

Applications of Context-Free Grammars, Ambiguity in Grammars and Languages. Push Down Automata: 

Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's, 

Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to 

PDA, From PDA to CFG.  

UNIT - IV  

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating €-

Productions. Chomsky Normal form Griebech Normal form. Pumping Lemma for Context-Free 

Languages: Statement of pumping lemma, Applications R18 B.Tech. CSE Syllabus JNTU HYDERABAD 

65 Closure Properties of Context-Free Languages: Closure properties of CFL’s, Decision Properties of 

CFL's Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description, 

The language of a Turing machine  

UNIT - V  

Types of Turing machine: Turing machines and halting Undecidability: Undecidability, A 

Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable 



Problems about Turing Machines, Recursive languages, Properties of recursive languages, Post's 

Correspondence Problem, Modified Post Correspondence problem, Other Undecidable Problems, Counter 

machines. 

TEXT BOOKS : 

1. “Introduction to Automata Theory Languages and Computation”. 

Hopcroft H.E. and Ullman J. D. Pearson Education. 

2. Introduction to Theory of Computation –Sipser 2nd edition Thomson. 

 
REFERENCES : 

1. Introduction to Formal Languages , Automata Theory 

and Computation – Kamala Krithivasan, Rama R 

2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley. 

3. Theory of Computation : A Problem – Solving 

Approach- Kavi Mahesh, Wiley India Pvt. Ltd. 

4. “Elements of Theory of Computation”, Lewis H.P. & Papadimition C.H. Pearson /PHI. 

5.  Theory of Computer Science – Automata languages and computation -

Mishra and Chandrashekaran, 2nd edition, PHI. 

6. Introduction to languages and the Theory of Computation, John C Martin, TMH. 

 

3. Vision of the Department 

To produce quality IT professionals, with an ability to adapt to ever changing IT needs of local, 

national and international arena, through effective teaching & learning, interactions with alumni and 

industry. 

4. Mission of the Department 

 

1. M1: To provide a holistic learning environment for students through ethical practices. 

2. M2: To provide quality infrastructure through practical exposure to the latest technology 

requirements. 

3. M3:  To train the students in soft skills to excel in placements and competitive exams at 

higher level the industry ready. 

4. M4:  To have a healthy Industry - Institute interaction through faculty development 

programs, student internships, guest lectures and using latest teaching learning 

methodologies. 

5. M5:   To provide effective platform to meet the industrial requirement and provide 

research-oriented environment for the faculty to meet the continuous societal needs.



6. PROGRAM EDUCATIONAL OBJECTIVES (PEOs) OF IT 

DEPARTMENT 

 

PEO NO. 

 

 

PROGRAM EDUCATIONAL OBJECTIVES STATEMENTS 

 

 

PEO1 

 

GRADUATES WILL HAVE THE ABILITY TO ESTABLISH THEMSELVES 

AS PRACTICING PROFESSIONALS  IN INFORMATION TECHNOLOGY OR 

RELATED FIELDS 

 

PEO2 

 

GRADUATES WILL APPLY THEIR PROGRAMMING SKILLS 

WITH TEAM SPIRIT TO ADDRESS EVER-CHANGING INDUSTRIAL 

REQUIREMENTS. 

 

PEO3 

 

GRADUATES WILL HAVE THE ABILITY TO ENGAGE IN LIFE-LONG 

LEARNING FOR EFFECTIVE ADAPTATION TO TECHNOLOGICAL 

DEVELOPMENTS 

 

 

PROGRAM OUTCOMES (IT) 

 

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals 

and an engineering specialization to the solution of complex engineering problems. 

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering 

problems reaching substantiated conclusions using first principles of mathematics, natural sciences, 

and engineering sciences. 

3. Design/development of solutions: Design solutions for complex engineering problems and design 

system components or processes that meet the specified needs with appropriate consideration for the 

public health and safety, and the cultural, societal, and environmental considerations. 

4. Conduct investigations of complex problems:  Use research-based knowledge and research 

methods including design of experiments, analysis and interpretation of data, and synthesis of the 

information to provide valid conclusions. 

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern 

engineering and IT tools including prediction and modeling to complex engineering activities with an 

understanding of the limitations. 

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, 



health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional 

engineering practice. 

7. Environment and sustainability: Understand the impact of the professional engineering solutions in 

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable 

development. 

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of 

the engineering practice. 

9. Individual and team work: Function effectively as an individual, and as a member or leader in 

diverse teams, and in multidisciplinary settings. 

10. Communication: Communicate effectively on complex engineering activities with the engineering 

community and with society at large, such as, being able to comprehend and write effective reports 

and design documentation, make effective presentations, and give and receive clear instructions. 

11. Project management and finance: Demonstrate knowledge and understanding of the engineering 

and management principles and apply these to one‘s own work, as a member and leader in a team, to 

manage projects and in multidisciplinary environments. 

12. Lifelong learning: Recognize the need for, and have the preparation and ability to engage in 

independent and lifelong learning in the broadest context of technological change. 

 

 

 Programme Specific Outcomes: 

PSO1: The IT graduates will work as software engineers for providing solutions to real world 

problems using structured and object oriented programming languages and open source software. 

PSO2: The IT graduates will work as System engineer, Software analyst and Tester for IT     and ITes. 



6. Course Objectives & Course Outcomes 

 

Course Objectives 

 

The aim of this course is, 

 

• To define mathematical methods of computing devices, called abstract machines, 

namely Finite Automata, Pushdown Automata, and Turning Machines. 
• To study the capabilities of these abstract machines. 

• To classify machines by their power to recognize languages. 

• Employ finite state machines to solve problems in computing 

• Explain deterministic and non- deterministic machines. 

• Identify different formal language classes and their relationships 

• Design grammars and recognizers for different formal languages 

• Determine the decidability and intractability of computational problems 

• Comprehend the hierarchy of problems arising in the computer sciences 

 

Course Description 

 

This course provides an introduction to the theory of computation, including formal 

languages, grammars, automata theory, computability, and complexity. 

 

 

Course Outcomes 

 

1.Students would be able to explain basic concepts in formal language theory, 

grammars, automata theory, computability theory, and complexity theory. 

 

2. The student will be able to demonstrate abstract models of computing, including 

deterministic (DFA), non-deterministic (NFA), Push Down Automata(PDA) and 

Turing (TM) machine models and their power to recognize the languages. 

 

3 The student will be able to explain the application of machine models and descriptors 

to compiler theory and parsing. Students will be able to explain the 

relationship among language classes and grammars with the help of 

Chomsky Hierarchy. 

 

4. Students will be able to relate practical problems to languages, automata, 

computability, and complexity. 

 

 

 

 

 



7. Brief Notes on importance of course and how it fits into the curriculum 

 

FORMAL LANGUAGES AND AUTOMATA THEORY 

 

This is an introductory course on formal languages, automata, computability and related 

matters. These topics form a major part of what is known as the theory of computation. 

 

The theory of computation or computer theory is the branch of computer science and 

mathematics that deals with whether and how efficiently problems can be solved on a model of 

computation, using an algorithm. The field is divided into two major branches: computability 

theory and complexity theory, but both branches deal with formal models of computation. 

 

The purpose of this course is to acquaint the student with an overview of the theoretical 

foundations of computer science from the perspective of formal languages. 

• Classify machines by their power to recognize languages. 

• Employ finite state machines to solve problems in computing. 

• Explain deterministic and non-deterministic machines. 

• Comprehend the hierarchy of problems arising in the computer sciences. 

 

 

MOTIVATION 

 

• Automata = abstract computing devices. 

• Turing studied Turing Machines (=computers) before there were any real computers. 

  

• We will also look at simpler devices than Turing machines (Finite State Automata, Push- 

down Automata, . . . ), and specification means, such as grammars and regular 
expressions. 

• NP-hardness = what cannot be efficiently computed 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computability_theory_%28computer_science%29
http://en.wikipedia.org/wiki/Computability_theory_%28computer_science%29
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Model_of_computation


 

COURSE DESCRIPTION 

 

This course will provide a foundation to the “Theory of Computation”. The student will 

realize that the sometimes-chaotic technology oriented world of computers has a very elegant 

mathematical basis to it.   This basis is deeply rooted in mathematics developed before the days 

of modern computers. Our study will lead to some interesting implications concerning the 

theoretical limits of computing. On the practical side, this course is a background for a course on 

compilers. Topics covered in this course include: mathematical prerequisites, finite state 

machines (automata), concept of a language and grammars, deterministic and non-deterministic 

accepters, regular expressions and languages, context-free languages, normal/canonical forms, 

pushdown automata, Turing machines, context sensitive languages, recursive and recursively 

enumerable languages. Each of the language classes has two points of view: a class of automata 

defining the language, and a class of grammars defining the language. This dual approach to 

defining languages, will finally lead to the Chomsky hierarchy of languages. We shall observe 

that the Turing Machine not only serves to define a language class, but also a mathematical 

model for computation itself and defines the theoretical limits of computation. 

 

8. Prerequisites 

 

• Set theory: 

o Sets and operations on sets 

o Relations and classification of relations 

o Equivalence relations and partitions 

o Functions operations of functions 

o Fundamentals of logic 
• Graph theory 

• Algorithms and data structures at the level of an introductory programming sequence. 

• Mathematical induction and its applications 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9. Instructional Learning Outcomes 

 

S.No. Unit Contents Outcomes 

 

1. 

 

I 

 

Fundamentals : Strings, 

Alphabet, Language, 

Operations, Finite state 

machine, definitions, finite 

automaton model, 

acceptance of strings, 

and languages, 

deterministic finite 

automaton and non 

deterministic finite 

automaton, transition 

diagrams and Language 

recognizers. 

 

At the end of the chapter the student 

will be 

• Able to manipulate strings 

on a given alphabet by 

applying the operations there 

on. 

• Able to visualize languages 

and finite state machines and 

their equivalence. 

• Able to tell languages by the 

   FSMs. 

   • Able to differentiate 

   Deterministic and Non- 

   Deterministic automata. 

   • Able to know the importance 

   of finite automata in 

   compiler design. 

   

Finite Automata: NFA with 

null transitions - Significance, 

acceptance of languages. 

Conversions and Equivalence: 

Equivalence between NFA 

with and without null 

transitions, NFA to DFA 

conversion, minimization of 

FSM, equivalence between 

two FSM’s, Finite Automata 

with output- Moore and 

Mealy machines. 

 

At the end of the chapter the sudent 

will be 

• Able to design NFA with 

null transitions for a given 

language. 

• Able to convert and prove 

equivalence between NFA 

and NFA without null 

transitions. 

• Able to minimize FSMs. 

 • Able to design finite 

 automata with outputs and 

 prove their equivalence. 



 

 

2 

 

II 
 

Regular Languages:  

Regular sets, regular  

 

At the end of the chapter student 

will be 

• Able to know the 

importance of regular sets 

& expressions 

• Able to construct FAs 

for REs and vice vfor 

show that a language is 

not regular. 

  expressions, identity  

  rules, Constructing 

  finite Automata for a 

  given regular expressions, 

  Conversion of Finite 

  Automata to Regular 

  expressions. Pumping 

  lemma of regular sets, 

  closure properties of 

  regular sets 

   

Grammar Formalism : 

Regular grammars-right 

linear and left linear 

grammars, equivalence 

between regular 

linear grammar and FA, 

inter conversion, Context 

free grammar, derivation 

trees, and sentential forms. 

Rightmost and leftmost 

derivation of strings. 

 

At the end of the chapter the 

student will be able to 

• Write regular grammar 

for regular language and 

be able to differentiate 

between left linear & 

right linear grammars. 

• Prove the 

equivalence 

between regular 
linear grammar and FA 

• Define CFG. 

• Derive (L&R) of strings 

for given CFG. 



 

3 

 

III 

 

Context Free Grammars: 

Ambiguity in context free 

grammars. Minimization of 

Context Free Grammars. 

Chomsky normal form, 

Greibach normal form, 

Pumping Lemma for 

 

At the end of the chapter the 

student will be able to 

• Know the cause of 

ambiguity in CFG 

& minimize CFG. 

• Write CFG in the 

normal forms. 

• Use pumping lemma to 

 



 

  Context Free Languages. 

Enumeration of properties 

of CFL 

prove that a language is not a 

CFL. 

   

Push Down Automata: Push 

down automata, definition, 

model, acceptance of CFL, 

Acceptance by final state 

and acceptance by empty 

state and its equivalence. 

Equivalence of CFL and 

PDA, interconversion. 

Introduction to DCFL and 

DPDA. 

 

At the end of the chapter the 

student will be able to 

• Define and design a PDA 

for a given CFL. 

• Prove the equivalence 

of CFL and PDA and 

their inter-

conversions. 

• Differentiate DCFL 

and DPDA 

 

4 

 

IV 

 

Turing Machine : Turing 

Machine, definition, model, 

design of TM, Computable 

functions, recursively 

enumerable languages. 

Church’s hypothesis, 

counter machine, types of 

Turing machines. , linear 

bounded automata and 

context sensitive language. 

. 

 

At the end of the chapter the 

student will be able to 

• Define and design TM 

for a given 

computation, a total 

function, or a language. 

• Convert algorithms 

into Turing 

Machines. 

• Arrange the machines 

in the hierarchy with 

respect to their 

capabilities. 



 

5 

 

V 

 

Computability Theory: 

Chomsky hierarchy of 

languages,   decidability 

of problems, Universal 

Turing machine, 

undecidability of posts 

correspondence problem, 

Turing  reducibility, 

Definition of  P and NP 

Problems, NP complete and 

NP hard problems. 

 

At the end of the chapter the 

student will be able to 

• Know the hierarchy of 

languages and 

grammars. 

• Know decidability 

of problems. 

• Genralize Turing 

Machines into 

universal TMs 

• Classify P and NP 

(complete & hard) 

Problems. 

 

10. Course mapping with PEO’s and PO’s 

Mapping of Course to PEOs and POs 

 

 

 

 
Course PEOS POs 

FLAT PEO1,PEO2 PO1,PO2,PO3,PO4,PO5,PO12 

 

 

Mapping of Course outcomes to Program Outcomes 

 

S.No. Course Outcome Pos 

1 Students would be able to explain basic concepts in formal 

language theory, grammars, automata theory, computability 

theory, and complexity theory. 

PO1,PO3,PO12 

2 The student will be able to demonstrate abstract PO1,PO2,PO3,PO4,PO
14 



 models of computing, including deterministic (DFA), non- 

deterministic (NFA), Push Down Automata(PDA) and Turing 

(TM) machine models and their power to recognize the 

languages. 

 

3  The student will be able to explain the application of machine 

models and descriptors to compiler theory and 
parsing. Students will be able to explain the relationship 
among language classes and grammars with the help of 
Chomsky Hierarchy 

PO2,PO3,PO5 

4  Students will be able to relate practical problems to 
languages, automata, computability, and complexity. 

PO1,PO2,PO3 

 

 
FLAT COURSE 
OUTCOMES 

PO1 PO
2 

PO
3 

PO4 PO
5 

PO6 PO7 PO8 PO
9 

PO10 PO1
1 

PO1
2 

PSO
1 

PSO
2 

CO1 2  1         1   

CO2 2 1 2 1          1 

CO3  1 1  2          

CO4  1 2            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11. Class Time Table. 

  
 



12. Individual Time Table. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



13. Lecture Schedule 

 

 

LESSON PLAN 

 
S.NO No of 

Periods 
Topics to be covered Regular / 

Additional 
 

Teachin

g aids 

used 

LCD/O

H P/BB 

Remarks 

UNIT 
1 

1 01 Introduction regular BB  

2 01 Alphabet, Strings, Language, Operations regular BB  

3 01 Mealy Machine – Definition and 
Examples 

regular   

4 01 Designing a Mealy Machine regular   

5 01 Moore Machine – Definition and 
Examples 

regular   

6 01 Equivalence of Moore and Mealy 
machines 

regular   

7 01 Conversion between Mealy and
 Moore 
machines 

regular   

8 01 Finite Automaton Model regular BB  

9 01 Accepting strings and languages regular BB  

10 01 DFA & NDFA, Transition Diagrams and 
Language Recognizers 

regular BB  

11 01 NFA to DFA Conversion regular BB  



12 01 NFA with  Transitions – significance, 
acceptance of languages 

regular BB  

13 01 Conversions and Equivalence : 
Equivalence 
between NFA with and without € 
transitions 

regular BB  

14 01 Equivalence of two FSM’s regular BB  

15 01 Minimization of FSM. regular BB  
16 01 Designing DFA for Elementary Languages regular BB  
17 01 Designing DFA for Complex Languages regular BB  
18 01 Designing DFA for Complex Languages 

with 
not and from left to right constructs 

regular BB  

19 01 Designing DFA for more examples regular BB/LCD  
20 01 Designing NFA regular BB/LCD  

 20 No. of classes required    

UNIT-II 

22 01 Regular sets, regular expressions, regular BB  
23 01 Identity Rules regular BB  
24 01 Constructing Finite Automata for a given 

regular expression 
regular BB  

25 01 Conversion of Finite Automata to Regular 
expressions 

regular BB  

26 01 Examples for Above regular BB  
27 01 Pumping lemma of regular sets regular BB  
28 01 Using Pumping lemma to show given 

language as Non-regular 
regular BB  

29 01 Closure properties of regular sets regular BB  
30 01 Regular grammars-right linear and left 

linear 
grammars 

regular BB  

31 01 equivalence between regular linear 
grammar 
and FA 

regular BB  

32 01 Inter conversion from FA to Regular 
Grammar and vice versa 

regular BB  

33 01 Context free grammar, Right most and 
leftmost derivation of strings 

regular BB  

34 01 derivation trees, sentential forms regular BB  
35 13 No. of classes required    

UNIT-
III 

36 01 Context Free Grammars: 

Ambiguity in context free grammars. 

regular BB  

37 01 Minimization of Context Free 

Grammars- Elimination of Useless 

symbols 

regular BB  



38 01 Minimization of Context Free 

Grammars- Elimination of Unit & Null 

Productions 

regular BB  

39 01 Chomsky normal form regular BB  
39 01 Greiback normal form regular BB  
40 01 Examples on CNF & GNF regular BB  



 

 

 

 
41 01 Pumping Lemma for Context Free 

Languages. 
regular BB  

42 01 Enumeration of properties of CFL regular BB  
43 01 Push down automata, definition, model,ID regular BB  

44 01 acceptance of CFL by final state and 
empty state 

regular BB  

45 02 Designing PDA regular BB  
46 01 Equivalence of CFL and PDA regular BB  
47 01 PDA to CFG regular BB  
48 01 Introduction to DCFL and DPDA regular BB  
49 15 No. of classes required    

 
UNIT-IV 

50 01 Turing Machine : Turing Machine, 
definition, model,ID 

regular BB  

51 01 Design of TM, regular BB  
52 01 Computable functions, regular BB  
53 02 Examples on Designing TM regular BB  

54 01 Recursively enumerable languages, 
Church’s hypothesis, 

regular BB  

55 01 counter machine regular BB  
56 01 Types of Turing machines regular BB  

57 01 Linear Bounded Automata(LBA) and 
context sensitive language 

regular BB  

58 09 No. of classes required    

UNIT-V 

59 01 Computability Theory : Chomsky 
hierarchy of languages 

regular BB  

60 01 Decidability of problems regular BB  
61 01 Universal Turing Machine regular BB  

62 01 Undecidability of Posts Correspondence 
problem 

regular BB  

63 01 Turing reducibility, regular BB  
64 01 Definition of P and NP problems regular BB  

65 01 NP complete and NP hard problems regular BB  

64 07 No. of classes required    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14. LectLECTURE  NOTES 

UNIT I:

 

Fundamentals 

 

• Symbol – An atomic unit, such as a digit, character, lower-case letter, etc. Sometimes a 

word. [Formal language does not deal with the “meaning” of the symbols.] 

 

• Alphabet – A finite set of symbols, usually denoted by Σ. 

Σ = {0, 1} Σ = {0, a, 9, 4} Σ = {a, b, c, d} 

 

• String – A finite length sequence of symbols, presumably from some alphabet. 

w = 0110 y = 0aa x = aabcaa z = 111 

 

Special string: ε (also denoted by λ) 
Concatenation: wz = 0110111  
Length: 
Reversal: 

|w| = 4 
yR = aa0 

|ε| = 0 |x| = 6 

 

• Some special sets of strings: 

Σ* All strings of symbols from Σ 

Σ+  Σ* - {ε} 

 

• Example: 

Σ = {0, 1} 

Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001,…} 

Σ+ = {0, 1, 00, 01, 10, 11, 000, 001,…} 

 

• A language is: 

1) A set of strings from some alphabet (finite or infinite). In other words, 

2) Any subset L of Σ* 

 

• Some special languages: 

{} The empty set/language, containing no string. 

{ε} A language containing one string, the empty string. 

 

• Examples: 

Σ = {0, 1} 

L = {x | x is in Σ* and x contains an even number of 0’s} 

 

Σ = {0, 1, 2,…, 9, .} 

L = {x | x is in Σ* and x forms a finite length real number} 

= {0, 1.5, 9.326,…} 

 



= {BEGIN, END, IF,…} 

 

Σ = {Pascal reserved words} U { (, ), ., :, ;,…} U {Legal Pascal identifiers} 

L = {x | x is in Σ* and x is a syntactically correct Pascal program} 

 

Σ = {English words} 

L = {x | x is in Σ* and x is a syntactically correct English sentence} 

 

Finite State Machines 

 

• A finite state machine has a set of states and two functions called the next-state function 

and the output function 

 

o The set of states correspond to all the possible combinations of the internal 

storage 

▪ If there are n bits of storage, there are 2n possible states 

 

o The next state function is a combinational logic function that given the inputs and 

the current state, determines the next state of the system 

 

• The output function produces a set of outputs from the current state and the inputs 

 

– There are two types of finite state machines 

– In a Moore machine, the output only depends on the current state 

– While in a Mealy machine, the output depends both the current state and the 

current input 

– We are only going to deal with the Moore machine. 

– These two types are equivalent in capabilities 

 

• A Finite State Machine consists of: 

 
K states: S = {s1, s2, … ,sk}, s1 is initial 

state N inputs: I = {i1, i2, … ,in} 
M outputs: O = {o1, o2, … ,om} 

Next-state function T(S, I) mapping each current state and input to next state 

Output Function P(S) specifies output 

 

Finite Automata 

 

• Two types – both describe what are called regular languages 

– Deterministic (DFA) – There is a fixed number of states and we can only be in 

one state at a time 



– Nondeterministic (NFA) –There is a fixed number of states but we can be in 

multiple states at one time 

 
• While NFA’s are more expressive than DFA’s, we will see that adding nondeterminism 

does not let us define any language that cannot be defined by a DFA. 

 

• One way to think of this is we might write a program using a NFA, but then when it is 

“compiled” we turn the NFA into an equivalent DFA. 

 

 

Formal Definition of a Finite Automaton 

 

1. Finite set of states, typically Q. 

2. Alphabet of input symbols, typically ∑ 

3. One state is the start/initial state, typically q0 // q0 ∈ Q 

4. Zero or more final/accepting states; the set is typically F. // F ⊆Q 

5. A transition function, typically δ. 

This function 

• Takes a state and input symbol as arguments. 

Deterministic Finite Automata (DFA) 

 

• A DFA is a five-tuple: M = (Q, Σ, δ, q0, F) 

 

Q A finite set of states 
Σ A finite input alphabet 
q0 The initial/starting state, q0 is in Q 

F A set of final/accepting states, which is a subset of Q 

δ A transition function, which is a total function from Q x Σ to Q 

 

δ: (Q x Σ) –> Q  δ is defined for any q in Q and s in Σ, and 

δ(q,s) = q’ is equal to another state q’ in Q. 

 

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in state q. 



 
 

• Let M = (Q, Σ, δ, q , F) be a DFA and let w be in Σ*. Then w is accepted by M iff 
0 

δ(q ,w) = p  for some state p in F. 
0 

 
• Let M = (Q, Σ, δ, q , F) be a DFA. Then the language accepted by M is the set: 

0 
L(M) = {w | w is in Σ* and δ(q ,w) is in F} 

0 
 

• Another equivalent definition: 

L(M) = {w | w is in Σ* and w is accepted by M} 

 
• Let L be a language. Then L is a regular language iff there exists a DFA M such that 

L = L(M). 

 

• Let M = (Q , Σ , δ , q , F ) and M = (Q , Σ , δ , p , F ) be DFAs. Then M and M are 
1 1 1 1 0 1 2 2 2 2 0 2 1 2 

equivalent iff L(M ) = L(M ). 
1 2 

 

• Notes: 

– A DFA M = (Q, Σ, δ,q0,F) partitions the set Σ* into two sets: L(M) 

and Σ* - L(M). 

 

– If L = L(M) then L is a subset of L(M) and L(M) is a subset of L. 

 
– Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a 

subset of L(M1). 

 

– Some languages are regular, others are not. 

For example, if 

L1 = {x | x is a string of 0's and 1's containing an even number of 1's}  



 



 
 

 

Nondeterministic Finite Automata (NFA) 

 

 

• An NFA is a five-tuple: M = (Q, Σ, δ, q0, F) 

 

Q A finite set of states 
Σ A finite input alphabet 
q0 The initial/starting state, q0 is in Q 

F A set of final/accepting states, which is a subset of Q 

δ A transition function, which is a total function from Q x Σ to 2Q 

 

δ: (Q x Σ) -> 2Q  -2Q is the power set of Q, the set of all subsets of Q 

δ(q,s) -The set of all states p such that there is a transition 

labeled s from q to p 

δ(q,s) is a function from Q x S to 2Q (but not to Q) 

• Let M = (Q, Σ, δ,q0,F) be an NFA and let w be in Σ*. Then w is accepted by M iff 

δ({q0}, w) contains at least one state in F. 



• Let M = (Q, Σ, δ,q0,F) be an NFA. Then the language accepted by M is the 

set: L(M) = {w | w is in Σ* and δ({q0},w) contains at least one state in F} 

 

• Another equivalent definition: 

L(M) = {w | w is in Σ* and w is accepted by M} 

 

 

 

 

 





 

NFAs with ε Moves 

 

• An NFA-ε is a five-tuple: M = (Q, Σ, δ, q0, F) 

 

Q A finite set of states 
Σ A finite input alphabet 
q0 The initial/starting state, q0 is in Q 

F A set of final/accepting states, which is a subset of Q 

δ A transition function, which is a total function from Q x Σ U {ε} to 2Q 

 

δ: (Q x (Σ U {ε})) –> 2Q 

δ(q,s) -The set of all states p such that there is a transition 

labeled a from q to p, where a is in Σ U {ε} 

• Sometimes referred to as an NFA-ε other times, simply as an NFA. 

 

 

• Let M = (Q, Σ, δ,q0,F) be an NFA-ε and let w be in Σ*. Then w is accepted by M iff 

δ^({q0}, w) contains at least one state in F. 

 
• Let M = (Q, Σ, δ,q0,F) be an NFA-ε. Then the language accepted by M is the set: 

L(M) = {w | w is in Σ* and δ^({q0},w) contains at least one state in F} 



• Another equivalent definition: 

L(M) = {w | w is in Σ* and w is accepted by M} 

 

 

 

Equivalence of NFA and NFA-ε 

 

• Do NFAs and NFA-ε machines accept the same class of languages? 

– Is there a language L that is accepted by a NFA, but not by any NFA-ε? 

– Is there a language L that is accepted by an NFA-ε, but not by any DFA? 

 

• Observation: Every NFA is an NFA-ε. 

 

• Therefore, if L is a regular language then there exists an NFA-ε M such that L = L(M). 

 

• It follows that NFA-ε machines accept all regular languages. 

 

• But do NFA-ε machines accept more? 

 

• Lemma 1: Let M be an NFA. Then there exists a NFA-ε M’ such that L(M) = L(M’). 

 

• Proof: Every NFA is an NFA-ε. Hence, if we let M’ = M, then it follows that L(M’) = 

L(M). 

 

• Lemma 2: Let M be an NFA-ε. Then there exists a NFA M’ such that L(M) = L(M’). 

 
• Proof: 

Let M = (Q, Σ, δ,q0,F) be an NFA-ε. 

Define an NFA M’ = (Q, Σ, δ’,q0,F’) 

as: 
F’ = F U {q0} if ε-closure(q0) contains at least one state from 

F F’ = F otherwise 

δ’(q, a) = δ^(q, a) - for all q in Q and a in Σ 

 
• Notes: 

– δ’: (Q x Σ) –> 2
Q is a function 

– M’ has the same state set, the same alphabet, and the same start state as M 

– M’ has no ε transitions 



 
 

 



 



 
 

• Theorem: Let L be a language. Then there exists an NFA M such that L= L(M) iff there 

exists an NFA-ε M’ such that L = L(M’). 

 
• Proof: 

(if) Suppose there exists an NFA-ε M’ such that L = L(M’). Then by Lemma 2 there 

exists an NFA M such that L = L(M). 

 

(only if) Suppose there exists an NFA M such that L = L(M).  Then by Lemma 1 there 

exists an NFA-ε M’ such that L = L(M’). 

 

• Corollary: The NFA-ε machines define the regular languages. 

 

 

Equivalence of DFAs and NFAs 

 

• Do DFAs and NFAs accept the same class of languages? 

– Is there a language L that is accepted by a DFA, but not by any NFA? 

– Is there a language L that is accepted by an NFA, but not by any DFA? 

 

• Observation: Every DFA is an NFA. 

 

• Therefore, if L is a regular language then there exists an NFA M such that L = L(M). 

 

• It follows that NFAs accept all regular languages. But do NFAs accept all? 



 
 

 

• Lemma 1: Let M be an DFA. Then there exists a NFA M’ such that L(M) = L(M’). 

 

• Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it follows that L(M’) = 

L(M). 

The above is just a formal statement of the observation from the above example. 

 

 

• Lemma 2: Let M be an NFA. Then there exists a DFA M’ such that L(M) = L(M’). 

 



0 

0 0 

Let M = (Q, Σ, δ,q0,F). 

 

Define a DFA M’ = (Q’, Σ, δ’,q’ ,F’) as: 
Q’ = 2Q Each state in M’ corresponds to a 

= {Q0, Q1,…,} subset of states from M 

where Qu = [qi0, qi1,…qij] 

F’ = {Qu | Qu contains at least one state in 

F} q’ = [q ] 

δ’(Qu, a) = Qv iff δ(Qu, a) = Qv 

 



 
 

 

• Theorem: Let L be a language. Then there exists an DFA M such that L = L(M) iff 

there exists an NFA M’ such that L = L(M’). 
• Proof: 

(if) Suppose there exists an NFA M’ such that L = L(M’). Then by Lemma 2 there exists 

an DFA M such that L = L(M). 

 

(only if) Suppose there exists an DFA M such that L = L(M).  Then by Lemma 1 there 

exists an NFA M’ such that L = L(M’). 

 

Corollary: The NFAs define the regular languages. 

 

 

Finite Automata with Output 

 

 

• Acceptor: 

The symbols of the sequence 

s(1) s(2) … s(i) … s(t) 

are presented sequentially to a machine M. M responds with a binary signal to each input. 

If the string scanned so far is accepted, then the light goes on, else the light is off. 



 

M 

r(n) … r(i) … r(2) r(1) 

Output channel 

 
 

 

 

 

s(t) … s(i) … s(2) s(1) 

 

 

Input channel Output signal 

 

 

 

 

Initialize 

 

 

 

 

 

 

A language acceptor 

 

• Transducer 

Abstract machines that operate as transducers are of interest in connection with the 

translation of languages. The following transducer produces a sentence 

r(1) r(2) … r(n) 

 

in response to the input sentence 

s(1) s(2) … s(m) 

 

 

 

 



Generator 

 

When M is started from its initial state, it emits a sequence of symbols 

r(1) r(2) … r(i) … r(t) 

from a set known as its output alphabet. 

 

 

 

r(n) … r(i) … r(2) r(1) 

 

 

 
 

 

 

 

Initialize 

 

 

 

 

 

We will begin our study with the transducer model of abstract machine (or automaton). We 

often refer to such a device as a Finite State Machine (FSM) or as an automaton with output. 

Finite State Machine (FSM) 

 

 

 

 

 

Output string 

 

The FSM model arises naturally from physical settings in which information-denoting 

signals are processed. Physical reality dictates that such systems are finite. 

Only a finite number of operations may be performed in a finite amount of time. Such 

systems are necessarily discrete. 

Problems are quite naturally decomposed into sequences of steps – hence our model is 

sequential. 

 

We require that our machine not be subject to uncertainty, hence its behavior is 

Output channel 

 

M 

Input string 
FSM 



There are two finite state machine models : 

 

1) Mealy model – in which outputs occur during transitions. 

2) Moore model – outputs are produced upon arrival at a new state. 

Mealy Model of FSM 

 

 

Mealy model – transition assigned output, Mt = <Q, S, R, f, g, 

qI> Where, 

Q = finite set of states // the machine’s memory 

S = input alphabet // set of stimuli 

R = output alphabet // set of responses 

qI = the machine’s initial state 

f : state transition function (or next state function) 

f : Q * S  Q 

g : output function 

g : Q * S  R 

• Example#1: 

Design a FSM (Mealy model) which takes in binary inputs and produces a ‘1’ as output 

whenever the parity of the input string ( so far ) is even. 

S = R = {0, 1} 

 

When designing such models, we should ask ourselves “What is the state set of the 

machine?”. 

The state set Q corresponds to what we need to remember about input strings. We note 

that the number of possible input strings corresponds to |S*| which is countably infinite. 

We observe, however, that a string may have only one of two possible parities. 

 

even parity – if n1(w) is even. 

 

odd parity – if n1(w) is odd. 

 

And this is all that our machine must remember about a string scanned so far. 

 

Hence |Q| = 2 where Q = {E, σ} with qI = E indicating the string has even parity and if Mt 

is in state σ, then the string has odd parity. 



E σ 

1/0 

• According to this machine’s specifications, it is supposed to produce an output of ‘1’ 
whenever the parity of the input string so far is even. Hence, all arcs leading into state E 
should be labeled with a ‘1’ output. 

 

Parity Checker (Mealy machine) 

 

 

0/1 0/0 

 

 

 

 

 

 

1/1 

 

 

Observe our notation that g(σ, 1) = 1 is indicated by the arc from state σ to state E with a 

‘1’ after a slash. 

 

 

The output of our machine is 0 when the current string ( so far ) has odd parity. 

 

state table present state input = 0 

 

next state, output 

input = 1 

 

next state, output 

for this 

 

parity machine 

E E, 1 σ, 0 

 σ σ, 0 E, 1 

 

Observe for the input 10100011 our machine produces the output sequence 00111101 

 

 

1/0 0/0 1/1 0/1 0/1 0/1 1/0 1/1 

E σ σ E E E E σ E 

 

 

the corresponding admissible state sequence 



• Example#2: 

Construct a Mealy model of an FSM that behaves as a two-unit delay. i.e. 

r(t) = {s(t - 2), t > 2 

{ 0 , otherwise 

A sample input/output session is given below : 

time 1 2 3 4 5 6 7 8 9 

stimulus 0 0 0 1 1 0 1 0 0 

response 0 0 0 0 0 1 1 0 1 

 

Observe that r(1) = r(2) = 0 

r(6) = 1 which equals s(4) and so on 

We know that S = R = {0, 1}. 

 

Moore model of FSM 

 

Moore model of FSM – the output function assigns an output symbol to each state. 

 

Ms = <Q, S, R, f, h, qI> 

 

Q = finite set of internal states 

S = finite input alphabet 

R = finite output alphabet 

f : state transition function 

f : Q * S  Q 

h : output function 

h : Q → R 

 

qI = Є Q is the initial state 

 

 

• Example#1: 

 

Design a Moore machine that will analyze input sequences in the binary alphabet S = {0, 1}. 
Let w = s(1) s(2) … s(t) be an input string 

 

N0(w) = number of 0’s in 

w N1(w) = number of 1’s in 

w 
 



1 
B, 1 

1 

0 

A, 0 C, 2 

0 

1 
D, 3 1 

0 

0 

So naturally, the output alphabet R = {0, 1, 2, 3} 

A sample stimulus/response is given below : 

stimulus 1 1 0 1 1 1 0 0 

response 0 1 2 1 2 3 0 3 2 

Observe that the length of the output sequence is one longer than the input sequence. 

Why is this so? 

Btw : This will always be the case. 

 

• The corresponding Moore machine : 

 

 

State diagram 

 

 0 1  
A D B 0 

B A C 1 

C B D 2 

D C A 3 

 

State table 

 

 

This machine is referred to as an up-down counter. 

 

For the previous input sequence : 11011100 the state sequence is : 



1 1 0 1 

(A, 0) (B, 1) (C, 2) (B, 1) (C, 2) 

 

1 1 0 0 

(D, 3) (A, 0) (D, 3) (C, 2) 

 

 

 

 

 

 

• Example#2: 

 

Design a Moore machine that functions as a pattern recognizer for “1011”. Your machine 

should output a ‘1’ whenever this pattern matches the last four inputs, and there has been 

no overlap, otherwise output a ‘0’. 

 

Hence S = R = {0, 1}. 

 

Here is a sample input/output sequence for this machine : 

 
t = 1 2 3 4 5 6 7 8 9 10 11 12 

S = 0 1 0 1 1 0 1 1 0 1 1 0 
R = 0 0 0 0 1 0 0 0 0 0 0 1 0 

 

We observe that r(5) = 1 because s(2) s(3) s(4) s(5) = 1011 

however r(8) = 0 because there has been overlap 

r(11) = 1 since s(8) s(9) s(10) s(11) = 1011 

 

 

 

Machine Identification Problem 

 

The following input-output behavior was exhibited by a transition-assigned machine 

(Mealy machine) Mt known to contain three states. Find an appropriate state table for 

M. Is the table unique? 

 

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

input 0 0 0 0 1 0 0 0 1 0 0 0 1 0 

output 0 1 0 1 0 0 0 0 1 0 1 0 0 1 

 

 

This problem is useful in fault detection and fault location experiments with sequential 

circuits ( i.e. digital circuits with memory ). 



0 

q1,1 

1 

   0   0 

q0,0 q2,2 

1 

One designs a computer circuit. Six months (or six years) later, how does one know that 

the circuit is working correctly? 

 

The procedure to solve this problem is helpful in fault diagnosis of digital circuits. 

 

 

 

 

Equivalence of Mealy and Moore Models 

 

The Mealy and Moore models of finite state machines are equivalent ( actually similar ). 
i.e. Mt ≈ Ms 

 

What does this mean ? 

 

And how would be prove it ? 

 

We will employ the following machines in our proof. 

 

 

1 

 

Ms : A mod 3 counter 



q q 

1/1 

0/0 

M1 : 
0/0 0/1 

 

 
 

1/0 

 

 

 

M2 :  

0/0 0/1  

 
 

   1/1  

 

 

 

M3 : 0/0 

 

 

 

 

 

 

 

1/1 

 

 

Three helpful Mealy machines 

 

 

 

 

 

 

 

 

1/1 

q q 

1/1 

q q 



 

UNIT-II 

 

Regular expressions are very intuitive. 

• Regular expressions are very useful in a variety of contexts. 

• Given a regular expression, an NFA-ε can be constructed from it automatically. 

• Thus, so can an NFA, a DFA, and a corresponding program, all automatically! 

Definition: 

 

• Let Σ be an alphabet. The regular expressions over Σ are: 

 

– Ø Represents the empty set { } 

– ε Represents the set {ε} 

– a Represents the set {a}, for any symbol a in Σ 

 

Let r and s be regular expressions that represent the sets R and S, respectively. 

– r+s Represents the set R U S (precedence 3) 

– rs Represents the set RS (precedence 2) 

– r* Represents the set R* (highest precedence) 

– (r) Represents the set R (not an op, provides precedence) 

 

• If r is a regular expression, then L(r) is used to denote the corresponding language. 

 

• Examples: Let Σ = {0, 1} 

 

(0 + 1)* All strings of 0’s and 1’s 

0(0 + 1)* All strings of 0’s and 1’s, beginning with a 0 

(0 + 1)*1 All strings of 0’s and 1’s, ending with a 1 

(0 + 1)*0(0 + 1)*  All strings of 0’s and 1’s containing at least one 0 

(0 + 1)*0(0 + 1)*0(0 + 1)* All strings of 0’s and 1’s containing at least two 0’s 

(0 + 1)*01*01*  All strings of 0’s and 1’s containing at least two 0’s 

(1 + 01*0)* All strings of 0’s and 1’s containing an even number of 0’s 

1*(01*01*)* All strings of 0’s and 1’s containing an even number of 0’s 

(1*01*0)*1* All strings of 0’s and 1’s containing an even number of 0’s 

 

 

 

 

 

 

Identities:  

 

1. Øu = uØ = Ø Multiply by 0 

 

2. εu = uε = u Multiply by 1 

 



3. u + Ø = u 

 

4. u + u = u 

 

8. u* = (u*)* 

 

9. u(v+w) = uv+uw 

 

10. (u+v)w = uw+vw 

 

11. (uv)*u = u(vu)* 

 

12. (u+v)* = (u*+v)* 

 

= u*(u+v)* 

 

= (u+vu*)* 

 

= (u*v*)* 

 

= u*(vu*)* 

 

= (u*v)*u* 

 

 

 

 

Equivalence of Regular Expressions and NFA-ε 

 

• Note: Throughout the following, keep in mind that a string is accepted by an NFA-ε if 

there exists a path from the start state to a final state. 

• Lemma 1: Let r be a regular expression. Then there exists an NFA-ε M such that L(M) = 

L(r). Furthermore, M has exactly one final state with no transitions out of it. 

• Proof: (by induction on the number of operators, denoted by OP(r), in r). 

 

• Basis: OP(r) = 0 

 

Then r is either Ø, ε, or a, for some symbol a in Σ 



 
 

 

 

• Inductive Hypothesis: Suppose there exists a k  0 such that for any regular expression 

r where 0  OP(r)  k, there exists an NFA-ε such that L(M) = L(r). Furthermore, 

suppose that M has exactly one final state. 

 

• Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) = k + 1), where 

k + 1 >= 1. 

Case 1) r = r1 + r2 

 

Since OP(r) = k +1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive 

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and 

L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state. 

 

Case 2) r = r1r2 

Since OP(r) = k+1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive 

hypothesis there exist NFA-ε machines M1 and M2 such that L(M1) = L(r1) and 

L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state. 



 
 

Case 3) r = r1* 

 

Since OP(r) = k+1, it follows that 0<= OP(r1) <= k. By the inductive hypothesis 

there exists an NFA-ε machine M1 such that L(M1) = L(r1). Furthermore, M1 has 

exactly one final state. 

 

 

 

 

 

 

 

 

 

 

 

 

• Example: 

 

Problem: Construct FA equivalent to RE, r = 0(0+1)* 

 

Solution: r = r1r2 

r1 = 0 

r2 = (0+1)* 

r2 = r3* 

r3 = 0+1 

r3 = r4 + r5 

r4 = 0 

r5 = 1 

 

 

Transition graph: 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

Definitions Required to Convert a DFA to a Regular Expression 

 

• Let M = (Q, Σ, δ, q1, F) be a DFA with state set Q = {q1, q2, …, qn}, and 

define: Ri,j = { x | x is in Σ* and δ(qi,x) = qj} 
Ri,j is the set of all strings that define a path in M from qi to qj. 

 

• Note that states have been numbered starting at 1! 



 
 

• Observations: 

 
 

 

 

• Lemma 2: Let M = (Q, Σ, δ, q1, F) be a DFA. Then there exists a regular expression r 

such that L(M) = L(r). 

 

• Proof:  

First we will show (by induction on k) that for all i,j, and k, where 1  i,j  

n And 0  k  n, that there exists a regular expression r such that L(r) = 

Rk
i,j . 

Basis: k=0 

 
R0

i,j contains single symbols, one for each transition from qi to qj, and possibly ε if 

i=j. 



) R 

k,k 

i,j 

r i,j = r (r ) r + r 

1,j2 

Case 1) No transitions from qi to qj and i != 

j r0
i,j = Ø 

Case 2) At least one (m  1) transition from qi to qj and i != j 

 
r0

i,j = a1 + a2 + a3 + … + am where δ(qi, ap) = qj, 

for all 1  p  m 

 
Case 3) No transitions from qi to qj and i = 

j r0
i,j = ε 

 
Case 4) At least one (m  1) transition from qi to qj and i = j 

r0
i,j = a1 + a2 + a3 + … + am + ε where δ(qi, ap) = qj 

for all 1  p  m 

 
• Inductive Hypothesis: 

Suppose that Rk-1
i,j can be represented by the regular expression rk-1

i,j for 

all 1  i,j  n, and some k 1. 

 

• Inductive Step: 
Consider Rk 

 

= Rk-
1 

 

 
i,
k 

 

k-1 
k,
k 

 

 
* k-1 

k
,j 

 

U Rk-
1 

 

 
i,
j 

 
. By the inductive hypothesis there 

exist regular expressions rk-1
i,k , r

k-1
k,k , r

k-1
k,j , and rk-1

i,j   generating Rk-1
i,k , R

k-1 , 
k-1 

k
,j 

, and Rk-1 i,

j 

, respectively. Thus, if we let 

 

k k-1  k-1  *   
k-1 k-1 i,k  k,k
  k,j  i,j 

 

then rk
i,j is a regular expression generating Rk

i,j ,i.e., L(rk
i,j) = Rk . 

 
• Finally, if F = {qj1, qj2, …, qjr}, then 

rn1,j1 + rn + … + rn1,jr 

is a regular expression generating L(M).• 

i,j (R 

R 



 
 

 



 
 

 



Pumping Lemma for Regular Languages 

 

• Pumping Lemma relates the size of string accepted with the number of states in a DFA 

 

• What is the largest string accepted by a DFA with n states? 

 

• Suppose there is no loop? 

Now, if there is a loop, what type of strings are accepted via the loop(s)? 

 

• Lemma: (the pumping lemma) 

 
Let M be a DFA with |Q| = n states. If there exists a string x in L(M), such that |x|  n, 
then there exists a way to write it as x = uvw, where u,v, and w are all in Σ* and: 

 

– 1  |uv|  n 

– |v|  1 

– such that, the strings uviw are also in L(M), for all i  0 

 



 
 

 

• Let: 

– u = a1…as 

– v = as+1…at 

 

• Since 0  s<t  n and uv = a1…at it follows that: 

– 1  |v| and therefore 1  |uv| 

– |uv|  n and therefore 1  |uv|  n 

 
• In addition, let: 

– w = at+1…am 

 

• It follows that uviw = a1…as(as+1…at)
iat+1…am is in L(M), for all i  0. 

In other words, when processing the accepted string x, the loop was traversed once, but 

could have been traversed as many times as desired, and the resulting string would still 

be accepted. 



Closure Properties of Regular Languages 

 

1. Closure Under Union 

If L and M are regular languages, so is L ⋃ M. 

Proof: Let L and M be the languages of regular expressions R and S, respectively. 

Then R+S is a regular expression whose language is L ⋃ M. 

 

2. Closure Under Concatenation and Kleene Closure 

RS is a regular expression whose language is LM. 

R* is a regular expression whose language is L*. 

 

3. Closure Under Intersection 

If L and M are regular languages, then so is L ⋂ M. 

Proof: Let A and B be DFA’s whose languages are L and M, respectively. 

 

4. Closure Under Difference 

If L and M are regular languages, then so is L – M = strings in L but not M. 

Proof: Let A and B be DFA’s whose languages are L and M, respectively. 

 

5. Closure Under Complementation 

The complement of language L (w.r.t. an alphabet Σ such that Σ* contains L) is Σ* – L. 

Since Σ* is surely regular, the complement of a regular language is always regular. 

 

6. Closure Under Homomorphism 

If L is a regular language, and h is a homomorphism on its alphabet, 

then h(L) = {h(w) | w is in L} is also a regular language. 



Grammar 

 

• Definition: A grammar G is defined as a 4-tuple, G = (V, T, S, P) 
Where, 

• V is a finite set of objects called variables, 

• T is a finite set of objects called terminal symbols, 

• S ∈ V is a special symbol called start variable, 

• P is a finite set of productions. 

Assume that V and T are non-empty and disjoint. 

 

• Example: 

Consider the grammar G = ({S}, {a, b}, S, P) with P given by 

S  aSb, S ε_. 

For instance, we have S ⇒ aSb ⇒ aaSbb ⇒ aabb. 

It is not hard to conjecture that L(G) = {anbn | n ≥ 0}. 

 

 

Right, Left-Linear Grammar 

 

• Right-linear Grammar: A grammar G = (V, T, S, P) is said to be right-linear if all 
productions are of the form: 

A  xB, 

A  x, 

Where A, B ∈ V and x ∈ T*. 

 

o Example#1: 

S → abS | a is an example of a right-linear grammar. 

 
▪ Can you figure out what language it generates? 

▪ L = {w ∈ {a,b}* | w 

Contains alternating a's and b's , begins with an a, and ends with a b} 

⋃ {a} 

▪ L((ab)*a) 

 

 

• Left-linear Grammar: A grammar G = (V, T, S, P) is said to be left-linear if all 

productions are of the form: 

A  Bx, 

A  x, 

Where A, B ∈ V and x ∈ T*. 

o Example#2: 



S → Aab 

A → Aab | aB 

B → a 

is an example of a left-linear grammar. 

 

▪ Can you figure out what language it generates? 

▪ L = {w Î {a,b}* | w is aa followed by at least one set of 

alternating ab's} 

 

▪ L(aaab(ab)*) 

 

 

o Example#3: 

 

Consider the grammar 

S → A 

A → aB | λ 

B → Ab 

This grammar is NOT regular. 

 

▪ No "mixing and matching" left- and right-recursive productions. 

 

 

 

Regular Grammar 

 

• A linear grammar is a grammar in which at most one variable can occur on the right side 
of any production without restriction on the position of this variable. 

 

• An example of linear grammar is G = ({S, S1, S2}, {a, b}, S, P) with 
S  S1ab, 

S1  S1ab | S2, 

S2  a. 

 

• A regular grammar is one that is either right-linear or left-liner. 

 

Testing Equivalence of Regular Languages 

 

• Let L and M be reg langs (each given in some form). 

 

To test if L = M 

 

1. Convert both L and M to DFA's. 

2. Imagine the DFA that is the union of the two DFA's (never mind there are two 

start states) 

3. If TF-algo says that the two start states are distinguishable, then L 6= M, 

otherwise, L = M. 



Example: 

 

We can “see" that both DFA accept L(ε+(0+1)*0). The result of the TF-algo is 

 

Therefore the two automata are equivalent. 

 

 

Regular Grammars and NFA's 

 

• It's not hard to show that regular grammars generate and nfa's accept the same class of 

languages: the regular languages! 

• It's a long proof, where we must show that 

o Any finite automaton has a corresponding left- or right-linear grammar, 

o And any regular grammar has a corresponding nfa. 

• Example: 

 

o We get a feel for this by example. 

 

Let S → aA A → abS | b 

 



CONTEXT FREE-GRAMMAR 

 

• Definition: Context-Free Grammar (CFG) has 4-tuple: G = (V, T, P, S) 

 

Where,  

V - A finite set of variables or non-terminals 

T - A finite set of terminals (V and T do not intersect) 

P - A finite set of productions, each of the form A –> α, 

Where A is in V and α is in (V U T)* 

Note: that α may be ε. 

S - A starting non-terminal (S is in V) 

 

• Example#1 CFG: 

 

G = ({S}, {0, 1}, P, S) 

P: 

(1) S –> 0S1 or just simply S –> 0S1 | ε 

(2) S –> ε 

 

 

• Example Derivations: 

 
S => 0S1 (1) 

S => ε (2) 

 => 01 (2) 

S => 0S1 (1) 

 => 00S11 (1) 

 => 000S111 (1) 

 => 000111 (2) 

 

• Note that G “generates” the language {0k1k | k>=0} 

 

 

 

Derivation (or Parse) Tree 

 

• Definition: Let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if: 

– Every vertex has a label from V U T U {ε} 
– The label of the root is S 

– If a vertex with label A has children with labels X1, X2,…, Xn, from left to 

right, then 
A –> X1, X2,…, Xn 

must be a production in P 

– If a vertex has label ε, then that vertex is a leaf and the only child of its’ parent 

 

• More Generally, a derivation tree can be defined with any non-terminal as the root. 



 

 
• Notes: 

– Root can be any non-terminal 

– Leaf nodes can be terminals or non-terminals 

– A derivation tree with root S shows the productions used to obtain a sentential 

form. 

 

 

Sentential Form 

 

• Definition: A sentence that contains variables and terminals. 

 

 

 

Leftmost and Rightmost Derivation 



Definition: A derivation is leftmost (rightmost) if at each step in the derivation a production is 

applied to the leftmost (rightmost) non-terminal in the sentential form. 

 
 

• The first derivation above is leftmost, second is rightmost and the third is neither. 

 

UNIV III: 

 

Ambiguity in Context Free Grammar 

 

• Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an x in L(G) 

with >1 leftmost derivations. Equivalently, G is said to be ambiguous if there exists an x 

in L(G) with >1 parse trees, or >1 rightmost derivations. 

 

• Note: Given a CFL L, there may be more than one CFG G with L = L(G). Some 

ambiguous and some not. 

 

• Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then L is 

inherently ambiguous. 

 

 

• Example: Consider the string aaab and the preceding grammar. 



 
 

• The string has two left-most derivations, and therefore has two distinct parse trees and is 

ambiguous . 

 

 

 

 

 

Eliminations of Useless Symbols 

 

• Definition: 

Let G = (V, T, S, P) be a context-free grammar. A variable A  V is said to be useful if 

and only if there is at least one w  L(G) such that 

 

S  xAy  w 

with x, y  (V  T) . 

 

In words, a variable is useful if and only if it occurs in at least on derivation. A variable 

that is not useful is called useless. A production is useless if it involves any useless 

variable 

 

• For a grammar with productions 

S  aSb |  | A 

A  aA 

 
A is useless variable and the production S  A plays no role since A cannot be eventually 
transformed into a terminal string; while A can appear in a sentential form derived from 
S, this sentential form can never lead to sentence! 



Hence, removing S  A (and A  aA) does not change the language, but does simplify 
the grammar. 

 

• For a grammar with productions 

S  A 

A  aA |  

B  bA 

 
B is useless so is the production B  bA! Observe that, even though a terminal string can 
be derived from B, there is no way to get to B from S, i.e. cannot achieve 

S  xBy. 

 
• Example: 

Eliminate useless symbols and productions from G = (V, T, S, P), where 

V = {S, A, B, C}, T = {a, b} and 

P consists of 

S  aS | A | C 

A  a 

B  aa 

C  aCb 

 

First, note that the variable C cannot lead to any terminal string, we can then remove C 

and its associated productions, we get G1 with V1 = {S, A, B}, T1 = {a} and P1 

consisting of 

S  aS | A 

A  a 

B  aa 

 

Next, we identify variables that cannot be reached from the start variable. We can create 

a dependency graph for V1. For a context-free grammar, a dependency graph has its 

vertices labeled with variables with an edge between any two vertices I and J if there is a 

production of the form 

I  xJy 

 

Consequently, the variable B is shown to be useless and can be removed together with its 

associated production. 

 

The resulting grammar G’ = (V’, T’, S, P’) is with V’ = {S, A}, T’ = {a} and P’ consisting 

of 

S  aS | A 

A  a 



Eliminations of -Production 

 

• Definition : 

a) Any production of a context-free grammar of the form 

A   

is called a -production. 

 

b) Any variable A for which the derivation 

A   

is possible is called nullable. 

 

• If a grammar contains some -productions or nullable variables but does not generate 

the language that contains an empty string, the -productions can be removed! 

 
• Example: 

Consider the grammar, G with productions 
S  aS1b 

S1  aS1b |  

L(G) = {anbn | n  1} which is a -free language. The -production can be removed 

after adding new productions obtained by substituting  for S1 on the right hand side. 

 

We get an equivalent G’ with productions 

S  aS1b | ab 

S1  aS1b | ab 

 
• Theorem: 

Let G be any context-free grammar with   L(G). There exists an equivalent grammar 

G’ without -productions. 

 

Proof : 
Find the set VN of all nullable variables of G 
1. For all productions A  , put A in VN 

2. Repeat the following step until no further variables are added to 
VN: For all productions 

B  A1A2…An 

 

where A1, A2, …, An are in VN, put B in VN. 

 

With the resulting VN, P’ can be constructed by looking at all productions in P of 

the form 

A  x1x2…xm, m  

1 where each xi  V  T. 



For each such production of P, we put in P’ the production plus all productions generated 

by replacing nullable variables with  in all possible combinations. However, if all xi are 

nullable, the resulting production A   is not put in P’. 

 

• Example: 

 

For the grammar G with 

S  ABaC 

A  BC 

B  b |  

C  D | 

 D  d 
the nullable variables are A, B, and C. 

 

The equivalent grammar G’ without -productions has P’ containing 

S  ABaC | BaC | AaC | ABa | aC | Ba | Aa | a 

A  BC | C | B 

B  b 

C  D 

D  d 

 

Eliminations of Unit-Production 

 

• Definition: 

Any production of a context-free grammar of the form 

A  B 

where A, B  V is called a unit-production. 

 
• Theorem: 

Let G = (V, T, S, P) be any context-free grammar without -productions. There exists a 

context-free grammar G’ = (V’, T’, S, P’) that does not have any unit-productions and that 

is equivalent to G. 

 

Proof: 

First of all, Any unit-production of the form A  A can be removed without any effect. 

We then need to consider productions of the form A  B where A and B are different 

variables. 

 
Straightforward replacement of B (with x1 = x2 = ) runs into a problem when we have 

A  B 

B  A 
We need to find for each A, all variables B such that 

A  B 

This can be done via a dependency graph with an edge (I, J) whenever the grammar G 

has a unit-production I  J; A  B whenever there is a walk from A to B in the graph. 



The new grammar G’ is generated by first putting in P’ all non-unit-productions of P. 

Then, for all A and B with A  B, we add to P’ 

A  y1 | y2 | … | yn 

 
where B  y1 | y2 | … | yn is the set of all rules in P’ with B on the left. Not that the rules 

are taken from P’, therefore, none of yi can be a single variable! Consequently, no unit- 

productions are created by this step. 

 

 
• Example: 

Consider a grammar G with 

S  Aa | B 

A  a | bc | B 

B  A | bb 

 

Its unit-production dependency graph is show below 

 
 

 

We have S  A, S  B, A  B and 

B  A. 

 

First, for the set of original non-unit-productions, we have 

S  Aa 

A  a | bc 

B  bb 
We then add the new rules 

S  a | bc | bb 

A  bb 

B  a | bc 

We finally obtain the equivalent grammar G’ with P’ consisting of 

S  Aa | a | bc | bb 

A  a | bc | bb 

B  bb | a | bc 

Notice that B and its associate production become useless. 

 

 

Minimization of Context Free Grammar 

 

• Theorem: 

Let L be a context-free language that does not contain . There exists a context-free 

grammar that generates L and that does not have any useless productions, -productions 

or unit-productions. 



Proof: 

We need to remove the undesirable productions using the following sequence of steps. 

1. Remove -productions 

2. Remove unit-productions 

3. Remove useless productions 

 

 

 

 

 

 

 

 

 

 

 

• Definition: 

Chomsky Normal Form 

A context-free grammar is in Chomsky normal form if all productions are of the form 

A  BC 
or 

A  a 

where A, B, C  V, and a  T. 

 

Note: that the number of symbols on the right side of productions is strictly limited; not 

more than two symbols. 

 

• Example: 

The following grammar is in Chomsky normal form. 

S  AS | a 

A  SA | b 

 

On the other hand, the grammar below is not. 

S  AS | AAS 

A  SA | aa 

 

• Theorem: 

Any context-free grammar G = (V, T, S, P) with   L(G) has an equivalent grammar G’ 

= (V’, T’, S, P’) in Chomsky normal form. 

 

Proof: 

First we assume (based on previous Theorem) without loss of generality that G has no 
- productions and no unit-productions. Then, we show how to construct G’ in two steps. 

 

Step 1: 
Construct a grammar G1 = (V1, T, S, P1) from G by considering all productions in 

P of the form 
A  x1x2…xn 



Where each xi is a symbol either in V or in T. 



Note that if n = 1, x1 must be a terminal because there is no unit-productions in G. 

In this case, put the production into P1. 

 
If n  2, introduce new variables Ba for each a  T. Then, for each production of 

the form A  x1x2…xn, we shall remove all terminals from productions whose 

right side has length greater than one 

 
This is done by putting into P1 a production 

A  C1C2…Cn 

Where  

 

And 

Ci = xi if xi  

V Ci = Ba if xi 

= a 
And, for every Ba, we also put into P1 a production 

Ba  a 

As a consequence of Theorem 6.1, it can be claimed that 
L(G1) = L(G) 

 

Step 2:  

The length of right side of productions is reduced by means of additional 

variables wherever necessary.   First of all, all productions with a single terminal 

or two variables (n = 2) are put into P’. Then, for any production with n  2, new 

variables D1, D2, … are introduced and the following productions are put into P’. 

A  C1D1 
D1  

C2D2 
… 

Dn-2  Cn-1Cn 

 

G’ is clearly in Chomsky normal form. 

 

• Example: 

Convert to Chomsky normal form the following grammar G with productions. 

S  ABa 

A  aab 

B  Ac 

 

Solution: 

Step 1: 
New variables Ba, Bb, Bc are introduced and a new grammar G1 is obtained. 

S  ABBa 

A  

BaBaBb B 

 ABc 
Ba  



a Bb  

b Bc  

c 
 

Step 2: 



Additional variables are introduced to reduce the length of the first two 

productions making them into the normal form, we finally obtain G’. 
S  AD1 

D1  BBa 
A  BaD2 
D2  

BaBb B  

ABc Ba  

a 
Bb  b 

Bc  c 

 

 

 

 

 

• Definition: 

Greibach normal form 

A context-free grammar is said to be in Greibach normal form if all productions have the 

form 

A  ax 

where a  T and x  V  

 

Note that the restriction here is not on the number of symbols on the right side, but rather 

on the positions of the terminals and variables. 

 

• Example: 

The following grammar is not in Greibach normal form. 

S  AB 

A  aA | bB | b 

B  b 

 

It can, however, be converted to the following equivalent grammar in Greibach normal 

form. 

 

 

 

• Theorem: 

S  aAB | bBB | bB 

A  aA | bB | b 

B  b 

For every context-free grammar G with  L(G), there exists an equivalent grammar 

G’ in Greibach normal form. 

 

 

Conversion 

 

• Convert from Chomsky to Greibach in two steps: 

1. From Chomsky to intermediate grammar 

a) Eliminate direct left recursion 



b) Use A  uBv rules transformations to improve references (explained later) 



2. From intermediate grammar into Greibach 

 Eliminate direct left recursion Step1: 

• Before 

A  Aa | b 

• After 

A  bZ | b 

Z  aZ | a 

 

• Remove the rule with direct left recursion, and create a new one with 

recursion on the right 

 

Step2: 

• Before 

A  Aa | Ab | b | c 

• After 

A  bZ | cZ | b | c 

Z  aZ | bZ | a | b 

• Remove the rules with direct left recursion, and create new ones with 

recursion on the right 

 

Step3: 

• Before 

A  AB | BA | a 

B  b | c 

• After 

A  BAZ | aZ | BA | a 

Z  BZ | B 

B  b | c 

 

 Transform A  uBv rules 

• Before 

A  uBb 

B  w1 | w1 |…| wn 

• After 
Add A  uw1b | uw1b |…| uwnb 

Delete A  uBb 

 

 

 

 

 

Background Information for the Pumping Lemma for Context-Free Languages 

 

• Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form 



A –> BC 
or A –> a 

 

where A, B and C are all in V and a is in T, then G is in Chomsky Normal Form (CNF). 

 

• Example:  

S –> AB | BA | 

aSb A –> a 
B –> b 

 

• Theorem: Let L be a CFL. Then L – {ε} is a CFL. 

 

• Theorem: Let L be a CFL not containing {ε}. Then there exists a CNF grammar G such 

that L = L(G). 

 

• Definition: Let T be a tree. Then the height of T, denoted h(T), is defined as follows: 
– If T consists of a single vertex then h(T) = 0 

– If T consists of a root r and subtrees T1, T2, … Tk, then h(T) = maxi{h(Ti)} + 1 

 

• Lemma: Let G be a CFG in CNF. In addition, let w be a string of terminals where 

A=>*w and w has a derivation tree T. If T has height h(T) 1, then |w|  2h(T)-1. 

 

• Proof: By induction on h(T) (exercise). 

 

• Corollary: Let G be a CFG in CNF, and let w be a string in L(G). If |w|  2k, where k  

0, then any derivation tree for w using G has height at least k+1. 

 

• Proof: Follows from the lemma. 

 

 

 

Pumping Lemma for Context-Free Languages 

 

• Lemma: 

Let G = (V, T, P, S) be a CFG in CNF, and let n = 2|V|. If z is a string in L(G) and |z|  
n, then there exist strings u, v, w, x and y in T* such that z=uvwxy and: 

– |vx|  1 (i.e., |v| + |x|  1) 

– |vwx|  n 

– uviwxiy is in L(G), for all i  0 

 
• Proof: 

Since |z|  n = 2k, where k = |V|, it follows from the corollary that any derivation tree 
for z has height at least k+1. 

 

By definition such a tree contains a path of length at least k+1. 

Consider the longest such path in the tree: 



 
 

Such a path has: 

– Length  k+1 (i.e., number of edges in the path is  k+1) 

– At least k+2 nodes 

– 1 terminal 

At least k+1 non-terminals 

 

 

• Since there are only k non-terminals in the grammar, and since k+1 appear on this long 

path, it follows that some non-terminal (and perhaps many) appears at least twice on this 

path. 

 

• Consider the first non-terminal that is repeated, when traversing the path from the leaf to 

the root. 

 
 

This path, and the non-terminal A will be used to break up the string z. 



 
 

 



 
 

 

• In addition, (2) also tells us: 

S =>* uAy (1) 

=>* uvAxy (2) 



=>* uv2Ax2y (2) 

=>* uv2wx2y (3) 

 
• More generally: 

S =>* uviwxiy for all i>=1 

 

• And also:  

S =>* uAy (1) 

=>* uwy (3) 

 

• Hence:  

S =>* uviwxiy for all i>=0 

 

 

 

• Consider the statement of the Pumping Lemma: 

 

– What is n? 

n = 2k, where k is the number of non-terminals in the grammar. 

 

– Why is |v| + |x|  1? 

 

Since the height of this subtree is  2, the first production is A->V1V2. Since no non- 

terminal derives the empty string (in CNF), either V1 or V2 must derive a non-

empty v or x. More specifically, if w is generated by V1, then x contains at least one 

symbol, and if w is generated by V2, then v contains at least one symbol. 

 

 

– Why is |vwx|  n? 

Observations: 

• The repeated variable was the first repeated variable on the path from the 

bottom, and therefore (by the pigeon-hole principle) the path from the leaf 

to the second occurrence of the non-terminal has length at most k+1. 

• Since the path was the largest in the entire tree, this path is the longest in 

the subtree rooted at the second occurrence of the non-terminal. Therefore 

the subtree has height k+1. From the lemma, the yield of the subtree has 

length  2k=n. 



- 

 
 

 

CFL Closure Properties 

 

• Theorem#1: 

The context-free languages are closed under concatenation, union, and Kleene closure. 

 
• Proof: 

Start with 2 CFL L(H1) and L(H2) generated by H1 = (N1,T1,R1,s1) and H2 = 

(N2,T2,R2,s2). 

Assume that the alphabets and rules are disjoint. 

 

Concatenation: 

Formed by L(H1)·L(H2) or a string in L(H1) followed by a string in L(H2) which can be 

generated by L(H3) generated by H3 = (N3,T3,R3,s3). N3 = N1 ⋃ N2, T3 = T1 ⋃ T2, R3 

= R1 ⋃ R2 ⋃ {s3 -->s1s2} where s3 s1s2 is a new rule introduced. The new rule 

generates a string of L(H1) then a string of L(H2). Then L(H1) ·L(H2) is context-free. 

 

Union: 

Formed by L(H1) ⋃ L(H2) or a string in L(H1) or a string in L(H2). It is generated by 

L(H3) generated by H4 = (N4,T4,R4,s4) where N4 = N1 ⋃ N2, T4 = T1 ⋃ T2, and R4 = 

R1 ⋃ R2 ⋃ {s4-->s1, s4  s2}, the new rules added will create a string of L(H1) or 

L(H2). Then L(H1) ⋃ L(H2) is context-free. 

 

Kleene: 

Formed by L(H1)* is generated by the grammar L(H5) generated by H5 = (N1,T1,R5,s1) 

with R5 = R1 ⋃ {s1 e, s1 s1s1}. L(H5) includes e, every string in L(H1), and through i-

1 applications of s1 s1s1, every string in L(H1)i. Then L(H1)* is generated by H5 and is 

context-free. 

 
• Theorem#2: 

The set of context-free languages is not closed under complementation or intersection. 

 
• Proof: 

Intersections of two languages L1 L2 can be defined in terms of the Complement and 

Union operations as follows: 

  
 

Therefore if CFL are closed under intersection then it is closed under compliment and if 

closed under compliment then it is closed under intersection. 

- L1 - L2) L1 L2 



The proof is just showing two context-free languages that their intersection is not a 

context-free language. 

 

Choose L1 = {anbncm | m,n ated by grammar H1 = {N1,T1,R1,s1}, where 

N1 = {s, A, B} 

T1 = {a, b, c} 

R1 = {s AB, 

A aAb, 

A e, 

B Bc, 

B e}. 

 

Choose L2 = {ambncn | m,n H2 = {N2,T2,R2,s2}, where 

N1 = {s, A, B} 

T1 = {a, b, c} 

R2 = {s AB, 

A aA, 

A e, 

B bBc, 

B e}. 

 

Thus L1 and L2 are both context-free. 

 

The intersection of the two languages is L3 = {anbncn | n  
already been proven earlier in this paper to be not context-free. Therefore CFL are not 

closed under intersections, which also means that it is not closed under complementation. 

 

 

 

 

Pushdown Automata (PDA) 

 

• Informally: 

– A PDA is an NFA-ε with a stack. 

–Transitions are modified to accommodate stack operations. 

 

• Questions: 

–What is a stack? 

–How does a stack help? 

 
• A DFA can “remember” only a finite amount of information, whereas a PDA can “remember” 
an infinite amount of (certain types of) information. 

 

• Example: 

{0n1n | 0=<n} Is not regular. 



{0n1n | 0 n k, for some fixed k} Is regular, for any fixed k. 

 

 

• For k=3:  

L = {ε, 01, 0011, 000111} 

 

 
 

• In a DFA, each state remembers a finite amount of information. 

• To get {0n1n | 0 n} with a DFA would require an infinite number of states using the 
preceding technique. 

 

• An infinite stack solves the problem for {0n1n | 0 n} as follows: 

–Read all 0’s and place them on a stack 

–Read all 1’s and match with the corresponding 0’s on the stack 

• Only need two states to do this in a PDA 

• Similarly for {0n1m0n+m | n,m 0} 

 

Formal Definition of a PDA 

 

• A pushdown automaton (PDA) is a seven-tuple: 

M = (Q, Σ, Г, δ, q0, z0, F) 

Q A finite set of states 

Σ A finite input alphabet 
Г A finite stack alphabet 

q0 The initial/starting state, q0 is in 

Q z0 A starting stack symbol, is in Г 

F A set of final/accepting states, which is a subset of Q 

δ A transition function, where 



δ: Q x (Σ U {ε}) x Г  finite subsets of Q x Г* 

 

 

• Consider the various parts of δ: 

Q x (Σ U {ε}) x Г  finite subsets of Q x Г* 

 

–Q on the LHS means that at each step in a computation, a PDA must consider its’ current state. 

–Г on the LHS means that at each step in a computation, a PDA must consider the symbol on 
top of its’ stack. 

–Σ U {ε} on the LHS means that at each step in a computation, a PDA may or may not consider 
the current input symbol, i.e., it may have epsilon transitions. 

 
–“Finite subsets” on the RHS means that at each step in a computation, a PDA will have several 
options. 

–Q on the RHS means that each option specifies a new state. 

–Г* on the RHS means that each option specifies zero or more stack symbols that will replace 
the top stack symbol. 

 

• Two types of PDA transitions #1: 

δ(q, a, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)} 

 

–Current state is q 

–Current input symbol is a 

–Symbol currently on top of the stack z 

–Move to state pi from q 

–Replace z with γi on the stack (leftmost symbol on top) 

–Move the input head to the next input symbol 

 



• Two types of PDA transitions #2: 

δ(q, ε, z) = {(p1,γ1), (p2,γ2),…, (pm,γm)} 

 

–Current state is q 

–Current input symbol is not considered 

–Symbol currently on top of the stack z 

–Move to state pi from q 

–Replace z with γi on the stack (leftmost symbol on top) 

–No input symbol is read 

 

 

 

• Example: (balanced parentheses) 

M = ({q1}, {“(“, “)”}, {L, #}, δ, q1, #, Ø) 

 
δ:  

(1) 
 

δ(q1, (, #) = {(q1, L#)} 

 (2) δ(q1, ), #) = Ø 

 (3) δ(q1, (, L) = {(q1, 
LL)} 

 (4) δ(q1, ), L) = {(q1, ε)} 

 (5) δ(q1, ε, #) = {(q1, ε)} 

 (6) δ(q1, ε, L) = Ø 

 

• Goal: (acceptance) 

–Terminate in a non-null state 

–Read the entire input string 

–Terminate with an empty stack 

• Informally, a string is accepted if there exists a computation that uses up all the input and leaves 



the stack empty. 

 

 

• Transition Diagram: 

 

• Example Computation: 

 
Current Input 
(()) 

Stack 
# 

Transition 

()) L# (1) - Could have applied rule 

)) LL# (3) (5), but it would have 

) L# (4) done no good 

ε # (4)  
ε - (5)  

 

 

 

• Example PDA #1: For the language {x | x = wcwr and w in {0,1}*} 

M = ({q1, q2}, {0, 1, c}, {R, B, G}, δ, q1, R, Ø) 

 
δ:  

(1) 
 

δ(q1, 0, R) = {(q1, BR)} 
 

(9) 
 

δ(q1, 1, R) = {(q1, GR)} 

 (2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)} 

 (3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, 
GG)} 

 (4) δ(q1, c, R) = {(q2, R)}   

 (5) δ(q1, c, B) = {(q2, B)}   

 (6) δ(q1, c, G) = {(q2, G)}   

 (7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, ε)} 

 (8) δ(q2, ε, R) = {(q2, ε)}   

 

• Notes: 

–Only rule #8 is non-deterministic. 

–Rule #8 is used to pop the final stack symbol off at the end of a computation. 



• Example Computation: 

(1) δ(q1, 0, R) = {(q1, BR)} (9) δ(q1, 1, R) = {(q1, GR)} 
(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)} 

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, 

GG)} (4) δ(q1, c, R) = {(q2, R)} 
(5) δ(q1, c, B) = {(q2, B)} 
(6) δ(q1, c, G) = {(q2, G)} 

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, 

ε)} (8) δ(q2, ε, R) = {(q2, ε)} 

 

 
State Input Stack Rule Applied Rules Applicable 
q1 01c10 R - (1) 
q1 1c10 BR (1) (10) 
q1 c10 GBR (10) (6) 
q2 10 GBR (6) (12) 
q2 0 BR (12) (7) 
q2 ε R (7) (8) 
q2 ε ε (8) - 

 

 

 

 

• Example Computation: 

(1) δ(q1, 0, R) = {(q1, BR)} (9) δ(q1, 1, R) = {(q1, GR)} 
(2) δ(q1, 0, B) = {(q1, BB)} (10) δ(q1, 1, B) = {(q1, GB)} 

(3) δ(q1, 0, G) = {(q1, BG)} (11) δ(q1, 1, G) = {(q1, 

GG)} (4) δ(q1, c, R) = {(q2, R)} 
(5) δ(q1, c, B) = {(q2, B)} 
(6) δ(q1, c, G) = {(q2, G)} 

(7) δ(q2, 0, B) = {(q2, ε)} (12) δ(q2, 1, G) = {(q2, 

ε)} (8) δ(q2, ε, R) = {(q2, ε)} 

 
State Input Stack Rule Applied 
q1 1c1 R  
q1 c1 GR (9) 
q2 1 GR (6) 
q2 ε R (12) 
q2 ε ε (8) 

 

 

• Definition: |—* is the reflexive and transitive closure of |—. 

–I |—* I for each instantaneous description I 

–If I |— J and J |—* K then I |—* K 



• Intuitively, if I and J are instantaneous descriptions, then I |—* J means that J follows from I by 
zero or more transitions. 

 

• Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by empty 

stack, denoted LE(M), is the set 
 

{w | (q0, w, z0) |—* (p, ε, ε) for some p in Q} 

 

• Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by final 

state, denoted LF(M), is the set 
 

{w | (q0, w, z0) |—* (p, ε, γ) for some p in F and γ in Г*} 

 

• Definition: Let M = (Q, Σ, Г, δ, q0, z0, F) be a PDA. The language accepted by empty stack 

and final state, denoted L(M), is the set 

 

{w | (q0, w, z0) |—* (p, ε, ε) for some p in F} 

 

• Lemma 1: Let L = LE(M1) for some PDA M1. Then there exits a PDA M2 such that L = LF(M2). 

• Lemma 2: Let L = LF(M1) for some PDA M1. Then there exits a PDA M2 such that L = LE(M2). 

• Theorem: Let L be a language. Then there exits a PDA M1 such that L = LF(M1) if and only 

if there exists a PDA M2 such that L = LE(M2). 

 
• Corollary: The PDAs that accept by empty stack and the PDAs that accept by final state define 
the same class of languages. 

 
• Note: Similar lemmas and theorems could be stated for PDAs that accept by both final state and 
empty stack. 

 

 

 

Greibach Normal Form (GNF) 

 
• Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form 

A –> aα 

 

Where A is in V, a is in T, and α is in V*, then G is said to be in Greibach Normal Form 

(GNF). 

 

• Example: 

S –> aAB | 

bB A –> aA | 

a 



B –> bB | c 

 

• Theorem: Let L be a CFL. Then L – {ε} is a CFL. 

• Theorem: Let L be a CFL not containing {ε}. Then there exists a GNF grammar G such that L 

= L(G). 

 

 

• Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M). 

• Proof: Assume without loss of generality that ε is not in L. The construction can be modified to 
include ε later. 

 
Let G = (V, T, P, S) be a CFG, and assume without loss of generality that G is in GNF. 

Construct M = (Q, Σ, Г, δ, q, z, Ø) where: 

 

Q = {q} 

Σ = T 

Г = V 

z = S 

 
δ: for all a in Σ and A in Г, δ(q, a, A) contains (q, γ) if A –> aγ is in P or rather: 

δ(q, a, A) = {(q, γ) | A –> aγ is in P and γ is in Г*}, for all a in Σ and A in Г 

 

• For a given string x in Σ* , M will attempt to simulate a leftmost derivation of x with G. 

• Example #1: Consider the following CFG in GNF. 

S  aS G is in GNF 

S  a L(G) = a+ 

 

Construct M as: 

Q = {q} 

Σ = T = {a} 

Г = V = {S} 

z = S 

 

δ(q, a, S) = {(q, S), (q, ε)} 

δ(q, ε, S) = Ø 

 

• Example #2: Consider the following CFG in GNF. 

(1) S –> aA 

(2) S –> aB 

(3) A –> aA G is in GNF 

(4) A –> aB L(G) = a+b+ 



(5) B –> bB 

(6) B –> b 

 

Construct M as: 

Q = {q} 

Σ = T = {a, b} 

Г = V = {S, A, B} 

z = S 

 

(1) δ(q, a, S) = {(q, A), (q, B)} From productions #1 and 2, S->aA, S->aB 

(2) δ(q, a, A) = {(q, A), (q, B)} From productions #3 and 4, A->aA, A->aB 

(3) δ(q, a, B) = Ø 

(4) δ(q, b, S) = Ø 

(5) δ(q, b, A) = Ø 

(6) δ(q, b, B) = {(q, B), (q, ε)} From productions #5 and 6, B->bB, B->b 

(7) δ(q, ε, S) = Ø 
(8) δ(q, ε, A) = Ø 

(9) δ(q, ε, B) = Ø Recall δ: Q x (Σ U {ε}) x Г –> finite 

subsets of Q x Г* 

 

 

• For a string w in L(G) the PDA M will simulate a leftmost derivation of w. 

–If w is in L(G) then (q, w, z0) |—* (q, ε, ε) 

 

–If (q, w, z0) |—* (q, ε, ε) then w is in L(G) 

 

• Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost 

derivation has form: 

 

 

• And each step in the derivation (i.e., each application of a production) adds a terminal and some 
non-terminals. 

A1 –> ti+1α 

 

=> t1t2…ti ti+1 αA1A2…Am 

 
• Each transition of the PDA simulates one derivation step. Thus, the ith step of the PDAs’ 
computation corresponds to the ith step in a corresponding leftmost derivation. 

 

• After the ith step of the computation of the PDA, t1t2…ti+1 are the symbols that have already 



been read by the PDA and αA1A2…Amare the stack contents. 

 

 

• For each leftmost derivation of a string generated by the grammar, there is an equivalent 
accepting computation of that string by the PDA. 

 
• Each sentential form in the leftmost derivation corresponds to an instantaneous description in 
the PDA’s corresponding computation. 

 

• For example, the PDA instantaneous description corresponding to the sentential form: 

=> t1t2…ti A1A2…Am 

 

would be: (q, ti+1ti+2…tn , A1A2…Am) 

 

 

 

• Example: Using the grammar from example #2: 

 
S => aA (1) 

=> aaA (3) 

=> aaaA (3) 

=> aaaaB (4) 

=> aaaabB (5) 
=> aaaabb (6) 

• The corresponding computation of the PDA: 

 

• (q, aaaabb, S) |— (q, aaabb, A) (1)/1 

 |— (q, aabb, A) (2)/1 

 |— (q, abb, A) (2)/1 

 |— (q, bb, B) (2)/2 

 |— (q, b, B) (6)/1 

 |— (q, ε, ε) (6)/2 

–String is read 

–Stack is emptied 

–Therefore the string is accepted by the PDA 

• Example #3: Consider the following CFG in GNF. 

(1) S –> aABC 

(2) A –> a G is in GNF 

(3) B –> b 

(4) C –> cAB 

(5) C –> cC 



Construct M as: 

 

Q = {q} 

Σ = T = {a, b, c} 

Г = V = {S, A, B, C} 

z = S 

 

(1) δ(q, a, S) = {(q, ABC)} S->aABC (9) δ(q, c, S) = Ø 

(2) δ(q, a, A) = {(q, ε)} A->a (10) δ(q, c, A) = Ø 

(3) δ(q, a, B) = Ø  (11) δ(q, c, B) = Ø 

(4) δ(q, a, C) = Ø C->cAB|cC (12) δ(q, c, C) = {(q, 

AB), (q, C)) 

(5) δ(q, b, S) = Ø (13) δ(q, ε, S) = Ø 

(6)          δ(q, b, A) = Ø  (14) δ(q, ε, A) = Ø 

(7)          δ(q, b, B) = {(q, ε)} B->b (15) δ(q, ε, B) = Ø 

(8)          δ(q, b, C) = Ø  (16)     δ(q, ε, C) = Ø 

 

 

 

• Notes: 

–Recall that the grammar G was required to be in GNF before the construction could be applied. 

–As a result, it was assumed at the start that ε was not in the context-free language L. 

 

• Suppose ε is in L: 

1) First, let L’ = L – {ε} 

 

Fact: If L is a CFL, then L’ = L – {ε} is a CFL. 

 

By an earlier theorem, there is GNF grammar G such that L’ = L(G). 

 

2) Construct a PDA M such that L’ = 

LE(M) How do we modify M to accept ε? 

Add δ(q, ε, S) = {(q, ε)}? No! 

 

 

 

• Counter Example: 

Consider L = {ε, b, ab, aab, aaab, …} 

Then L’ = {b, ab, aab, aaab, …} 



• The GNF CFG for L’: 

(1) S –> aS 

(2) S –> b 

 

 

• The PDA M Accepting L’: 

Q = {q} 

Σ = T = {a, b} 

Г = V = {S} 

z = S 

 

δ(q, a, S) = {(q, S)} 

δ(q, b, S) = {(q, ε)} 

δ(q, ε, S) = Ø 

 

• If δ(q, ε, S) = {(q, ε)} is added then: 

L(M) = {ε, a, aa, aaa, …, b, ab, aab, aaab, …} 

 

 

3) Instead, add a new start state q’ with transitions: 

 

δ(q’, ε, S) = {(q’, ε), (q, S)} 

 

• Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M). 

• Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that LE(M) = L(G). 

• Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff there exists a 
PDA M such that L = LE(M). 

 

• Corollary: The PDAs define the CFLs. 

 

 

 

 

 

 

Equivalence of CFG to PDAs 

 

• Example: Consider the grammar for arithmetic expressions we introduced earlier. 

It is reproduced below for convenience. G = ( {E, T, F}, {n, v, +, *, ( , )}, P, E), where 



E = { 1: 

2: 

3: 

4: 

E 

 

T 
E 

T 

  

 

 

E  

 

 

 

 

 

T  

+ T, 

T, 

F, 

F, 

5:  F      n, 

6:  F      v, 

7: F    (   E ), 

} 

 

Suppose the input to our parser is the expression, n*(v+n*v). Since G is unambiguous 

this expression has only one leftmost derivation, p = 2345712463456. We describe the 

behavior of the PDA in general, and then step through its moves using this derivation to 

guide the computation. 

• PDA Simulator: 

o Step 1: Initialize the stack with the start symbol (E in this case). The start symbol 

will serve as the bottom of stack marker (Z0). 

o Step 2: Ignoring the input, check the top symbol of the stack. 

▪ Case (a) Top of stack is a nonterminal, “X”: non-deterministically decide 

which 

X-rule to use as the next step of the derivation. After selecting a rule, 

replace X in the stack with the rightpart of that rule. If the stack is non- 

empty, repeat step 2. Otherwise, halt (input may or may not be empty.) 

▪ Case(b) Top of stack is a terminal, “a”: Read the next input. If the input 

matches a, then pop the stack and repeat step 2. 

Otherwise, halt (without popping “a” from the stack.) 

 

o This parsing algorithm by showing the sequence of configurations the parser 

would assume in an accepting computation for the input, n*(v+n*v). 

Assume “q0” is the one and only state of this PDA. 

 

o p (leftmost derivation in G) = 2345712463456 

(q0, n*(v+n*v), E) 

2 M (q0, n*(v+n*v), T) 

3 M (q0, n*(v+n*v), T*F) 

4 M (q0, n*(v+n*v), F*F) 



5 M 

 

 

7 M 

(q0, n*(v+n*v), n*F) 

 

 

(q0, (v+n*v), (E) ) 

read M 

read M 

read M 

(q0, *(v+n*v), *F) 

 

(q0, (v+n*v), F) 

 

(q0, v+n*v), E) ) 

1 M 

2 M 

4 M 

6 M 

(q0, v+n*v),E+T) ) 

 

(q0, v+n*v), T+T) ) 

 

(q0, v+n*v), F+T) ) 

 

(q0, v+n*v), v+T) ) 

 

 

 

 

 

read M 

 

 

 

 

 

 

(q0, +n*v), +T) ) 

  
read M (q0, n*v), T) ) 

3 M 

4 M 

5 M 

(q0, n*v), T*F) ) 

 

(q0, n*v), F*F) ) 

 

(q0, n*v), n*F) ) 

 

 

 

read M 

 

 

 

 

(q0, *v), *F) ) 

  
read M (q0, v), F) ) 

 

6 M (q0, v), v) ) read M  (q0, ), ) ) 

read M (q0, l, l ) accept! 

 

Deterministic PDAs and DCFLs 

• Definition: A Deterministic Pushdown Automaton (DPDA) is a 7-tuple, 

M = (Q, , , , q0, Z0, A), 

where 

Q = finite set of states, 

 = input alphabet, 

 = stack alphabet, 

q0  Q = the initial state, 

Z0  = bottom of stack marker (or initial stack symbol), and 

: Q  (  {L})    Q  * = the transition function (not necessarily 

total). Specifically, 

[1] if d(q, a, Z) is defined for some a  and Z , then d(q, L, Z) =  and 

d(q, a, Z) = 1. 



[2] Conversely, if d(q, L, Z)  , for some Z, then d(q, a, Z)  , for all a 

, and d(q, L, Z) = 1. 

• NOTE: DPDAs can accept their input either by final state or by empty stack – just as for 

the non-deterministic model. We therefore define Dstk and Dste, respectively, as the 

corresponding families of Deterministic Context-free Languages accepted by a DPDA by 

empty stack and final state. 

 

 

 

UNIT IV: 

 

Turing Machines (TM) 

 

• Generalize the class of CFLs: 

 

 

 

• Another Part of the Hierarchy: 



 
 

 

 

 

• Recursively enumerable languages are also known as type 0 languages. 

• Context-sensitive languages are also known as type 1 languages. 

• Context-free languages are also known as type 2 languages. 

• Regular languages are also known as type 3 languages. 

• TMs model the computing capability of a general purpose computer, which informally can 
be described as: 

– Effective procedure 

• Finitely describable 

• Well defined, discrete, “mechanical” steps 

• Always terminates 

– Computable function 

• A function computable by an effective procedure 

• TMs formalize the above notion. 



Deterministic Turing Machine (DTM) 

 

 

 

• Two-way, infinite tape, broken into cells, each containing one symbol. 

• Two-way, read/write tape head. 

• Finite control, i.e., a program, containing the position of the read head, current symbol being 
scanned, and the current state. 

• An input string is placed on the tape, padded to the left and right infinitely with blanks, 
read/write head is positioned at the left end of input string. 

• In one move, depending on the current state and the current symbol being scanned, the TM 1) 
changes state, 2) prints a symbol over the cell being scanned, and 3) moves its’ tape head one 
cell left or right. 

• Many modifications possible. 

 

 

 

 

Formal Definition of a DTM 

– A DTM is a seven-tuple: 

M = (Q, Σ, Γ, δ, q0, B, 

F) 

Q A finite set of states 

Γ A finite tape alphabet 

B A distinguished blank symbol, which is in Γ 

Σ A finite input alphabet, which is a subset of Γ– {B} 

q0 The initial/starting state, q0 is in Q 

F A set of final/accepting states, which is a subset of Q 

δ A next-move function, which is a mapping from 

Q x Γ –> Q x Γ x {L,R} 

 

Intuitively, δ(q,s) specifies the next state, symbol to be written and the direction of tape 

head movement by M after reading symbol s while in 

state q. 



• Example #1: {0n1n | n >= 1} 

0 1 X Y B 
q0 (q1, X, R) - - (q3, Y, R) - 

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) - 

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) - 

q3 - - - (q3, Y, R) (q4, B, R) 

q4 - - - - - 

 

 

 

 

 

• Sample Computation: (on 0011) 

 



 
 

– Example #1: {0n1n | n >= 1} 

0 1 X Y B 
q0 (q1, X, R) - - (q3, Y, R) - 
q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) - 
q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) - 
q3 - - - (q3, Y, R) (q4, B, R) 
q4 - - - - - 

 

– The TM basically matches up 0’s and 1’s 

– q1 is the “scan right” state 

– q2 is the “scan left” state 

– q4 is the final state 

 

– Example #2: {w | w is in {0,1}* and w ends with a 0} 

0 

00 

10 

10110 

Not ε 

 
Q = {q0, q1, q2} 

Γ = {0, 1, B} 

Σ = {0, 1} 



F = {q2} 

 

0 1 B 
q0 (q0, 0, R) (q0, 1, R) (q1, B, L) 
q1 (q2, 0, R) - - 
q2 - - - 

 

– q0 is the “scan right” state 

– q1 is the verify 0 state 

 

– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM, and let w be a string in Σ*. Then w is 

accepted by M iff 

 

q0w |—* α1pα2 

 

Where p is in F and α1 and α2 are in Г* 

 

– Definition: Let M = (Q, Σ, Г, δ, q0, B, F) be a TM. The language accepted by M, 

denoted L(M), is the set 

 

 

 

– Notes: 

{w | w is in Σ* and w is accepted by M} 

• In contrast to FA and PDAs, if a TM simply passes through a final state then the 

string is accepted. 

• Given the above definition, no final state of an TM need have any exiting transitions. 

Henceforth, this is our assumption. 

• If x is not in L(M) then M may enter an infinite loop, or halt in a non-final state. 

• Some TMs halt on all inputs, while others may not. In either case the language 

defined by TM is still well defined. 

– Definition: Let L be a language. Then L is recursively enumerable if there exists a TM M 
such that L = L(M). 

 

– If L is r.e. then L = L(M) for some TM M, and 

• If x is in L then M halts in a final (accepting) state. 

• If x is not in L then M may halt in a non-final (non-accepting) state, or loop 

forever. 

 

– Definition: Let L be a language. Then L is recursive if there exists a TM M such that L = 
L(M) and M halts on all inputs. 

 

– If L is recursive then L = L(M) for some TM M, and 

• If x is in L then M halts in a final (accepting) state. 

• If x is not in L then M halts a non-final (non-accepting) state. 

 



Notes: 



– The set of all recursive languages is a subset of the set of all recursively enumerable 
languages 

 

– Terminology is easy to confuse: A TM is not recursive or recursively enumerable, 
rather a language is recursive or recursively enumerable. 

 

 

• Recall the Hierarchy: 

 

 

 

– Observation: Let L be an r.e. language. Then there is an infinite list M0, M1, … of 

TMs such that L = L(Mi). 

 

– Question: Let L be a recursive language, and M0, M1, … a list of all TMs such that L 

= L(Mi), and choose any i>=0. Does Mi always halt? 

 

Answer: Maybe, maybe not, but at least one in the list does. 

 

– Question: Let L be a recursive enumerable language, and M0, M1, … a list of all TMs 

such that L = L(Mi), and choose any i>=0. Does Mi always halt? 

 

Answer: Maybe, maybe not. Depending on L, none might halt or some may halt. 

 

– If L is also recursive then L is recursively enumerable. 



– Question: Let L be a recursive enumerable language that is not recursive (L is in r.e. – r), 
and M0, M1, … a list of all TMs such that L = L(Mi), and choose any i>=0. Does Mi 
always halt? 
Answer: No! If it did, then L would not be in r.e. – r, it would be recursive. 

 

• Let M be a TM. 

• Question: Is L(M) r.e.? 

Answer: Yes! By definition it is! 

 

• Question: Is L(M) recursive? 

Answer: Don’t know, we don’t have enough information. 

 

• Question: Is L(M) in r.e – r? 

Answer: Don’t know, we don’t have enough information. 

 

• Let M be a TM that halts on all inputs: 

• Question: Is L(M) recursively enumerable? 

Answer: Yes! By definition it is! 

 

• Question: Is L(M) recursive? 

Answer: Yes! By definition it is! 

 

• Question: Is L(M) in r.e – r? 

Answer: No! It can’t be. Since M always halts, L(M) is recursive. 

 

• Let M be a TM. 

• As noted previously, L(M) is recursively enumerable, but may or may not be 

recursive. 

 

• Question: Suppose that L(M) is recursive. Does that mean that M always halts? 

Answer: Not necessarily. However, some TM M’ must exist such that L(M’) = L(M) 

and M’ always halts. 

 

• Question: Suppose that L(M) is in r.e. – r. Does M always halt? 

Answer: No! If it did then L(M) would be recursive and therefore not in r.e. – r. 

 

• Let M be a TM, and suppose that M loops forever on some string x. 

• Question: Is L(M) recursively enumerable? 

Answer: Yes! By definition it is. 

 

• Question: Is L(M) recursive? 

Answer: Don’t know. Although M doesn’t always halt, some other TM M’ may exist 



such that L(M’) = L(M) and M’ always halts. 

 

• Question: Is L(M) in r.e. – r? 

Answer: Don’t know. 

 

 

Closure Properties for Recursive and Recursively Enumerable Languages 

 

• TMs Model General Purpose Computers: 

• If a TM can do it, so can a GP computer 

• If a GP computer can do it, then so can a TM 

 

If you want to know if a TM can do X, then some equivalent question are: 

• Can a general purpose computer do X? 

• Can a C/C++/Java/etc. program be written to do X? 

 

For example, is a language L recursive? 

• Can a C/C++/Java/etc. program be written that always halts and accepts L? 

 

 

• TM Block Diagrams: 

• If L is a recursive language, then a TM M that accepts L and always halts can be 

pictorially represented by a “chip” that has one input and two outputs. 

 

 

• If L is a recursively enumerable language, then a TM M that accepts L can be 

pictorially represented by a “chip” that has one output. 

 
 

 

• Conceivably, M could be provided with an output for “no,” but this output cannot be 

counted on. Consequently, we simply ignore it. 

 

– Theorem: The recursive languages are closed with respect to complementation, i.e., if L is 
a recursive language, then so is 

 

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M’ as 



follows: 

 

 

 

– Note That: 

– M’ accepts iff M does not 

– M’ always halts since M always halts 

From this it follows that the complement of L is recursive. • 

 

 

• Theorem: The recursive languages are closed with respect to union, i.e., if L1 and L2 
are recursive languages, then so is 

 

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and M1 and M2 

always halts. Construct TM M’ as follows: 

 

 

• Note That: 
• L(M’) = L(M1) U L(M2) 

• L(M’) is a subset of L(M1) U L(M2) 

• L(M1) U L(M2) is a subset of L(M’) 

• M’ always halts since M1 and M2 always 

halt It follows from this that L3 = L1 U L2 is 

recursive. 

 

 

• Theorem: The recursive enumerable languages are closed with respect to union, i.e., if 
L1 and L2 are recursively enumerable languages, then so is L3 = L1 U L2 

 



Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct 

M’ as follows: 



 
 

 

 

• Note That: 

– L(M’) = L(M1) U L(M2) 
• L(M’) is a subset of L(M1) U L(M2) 
• L(M1) U L(M2) is a subset of L(M’) 

– M’ halts and accepts iff M1 or M2 halts and accepts 

It follows from this that is recursively enumerable. 

 

 

 

 

The Halting Problem – Background 

• Definition: A decision problem is a problem having a yes/no answer (that one presumably 

wants to solve with a computer). Typically, there is a list of parameters on which the 

problem is based. 

– Given a list of numbers, is that list sorted? 

– Given a number x, is x even? 

– Given a C program, does that C program contain any syntax errors? 

– Given a TM (or C program), does that TM contain an infinite loop? 

From a practical perspective, many decision problems do not seem all that interesting. 

However, from a theoretical perspective they are for the following two reasons: 

– Decision problems are more convenient/easier to work with when proving 
complexity results. 

– Non-decision counter-parts are typically at least as difficult to solve. 

 

• Notes: 

– The following terms and phrases are analogous: 

Algorithm - A halting TM program 

Decision Problem  - A language 

(un)Decidable - (non)Recursive 



 

 

Statement of the Halting Problem 

 

• Practical Form: (P1) 

Input: Program P and input I. 

Question: Does P terminate on input I? 

 

• Theoretical Form: (P2) 

Input: Turing machine M with input alphabet Σ and string w in Σ*. 

Question: Does M halt on w? 

 

• A Related Problem We Will Consider First: (P3) 

Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*. 

Question: Is w in L(M)? 

 
• Analogy: 

Input: DFA M with input alphabet Σ and string w in Σ*. 

Question: Is w in L(M)? 

 

Is this problem decidable? Yes! 

 

• Over-All Approach: 

• We will show that a language Ld is not recursively enumerable 
• From this it will follow that is not recursive 
• Using this we will show that a language Lu is not recursive 
• From this it will follow that the halting problem is undecidable. 

 

 

The Universal Language 

• Define the language Lu as follows: 

 

Lu = {x | x is in {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)} 

 

 

• Let x be in {0, 1}*. Then either: 

 

1. x doesn’t have a TM prefix, in which case x is not in Lu 

 

2. x has a TM prefix, i.e., x = <M,w> and either: 

 

a) w is not in L(M), in which case x is not in Lu 

 

b) w is in L(M), in which case x is in Lu 



• Compare P3 and Lu: 

 

(P3): 

Input: Turing machine M with input alphabet Σ and one final state, and string w in Σ*. 

 

• Notes: 
• Lu is P3 expressed as a language 
• Asking if Lu is recursive is the same as asking if P3 is decidable. 

• We will show that Lu is not recursive, and from this it will follow that P3 is 

un- decidable. 
• From this we can further show that the halting problem is un-decidable. 
• Note that Lu is recursive if M is a DFA. 

 

 

 

 

 

 

Church-Turing Thesis 

 

• There is an effective procedure for solving a problem if and only if there is a TM that 

halts for all inputs and solves the problem. 

 

• There are many other computing models, but all are equivalent to or subsumed by TMs. 

There is no more powerful machine (Technically cannot be proved). 

 

• DFAs and PDAs do not model all effective procedures or computable functions, but only 

a subset. 

 

• If something can be “computed” it can be computed by a Turing machine. 

 

• Note that this is called a Thesis, not a theorem. 

 

• It can’t be proved, because the term “can be computed” is too vague. 

 

• But it is universally accepted as a true statement. 

 

• Given the Church-Turing Thesis: 

 

o What does this say about "computability"? 

o Are there things even a Turing machine can't do? 

o If there are, then there are things that simply can't be "computed." 

▪ Not with a Turing machine 



▪ Not with your laptop 

 

▪ Not with a supercomputer 

 

o There ARE things that a Turing machine can't do!!! 

• The Church-Turing Thesis: 

 

o In other words, there is no problem for which we can describe an algorithm that 

can’t be done by a Turing machine. 

 

 

 

 

 

 

 

 

 

The Universal Turing machine 

 

• If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any 

Tm on any tape that it is given? 

• Yes. This machine is called the Universal Turing machine. 

 

• How would we build a Universal Turing machine? 

 

o We place an encoding of any Turing machine on the input tape of the Universal 

Tm. 

o The tape consists entirely of zeros and ones (and, of course, blanks) 

o Any Tm is represented by zeros and ones, using unary notation for elements and 

zeros as separators. 

• Every Tm instruction consists of four parts, each a represented as a series of 1's and 

separated by 0's. 

• Instructions are separated by 00. 

 

• We use unary notation to represent components of an instruction, with 

 

➢ 0 = 1, 

 

➢ 1 = 11, 

 

➢ 2 = 111, 



➢ 3 = 1111, 

 

➢ n = 111...111 (n+1 1's). 

 

• We encode qn as n + 1 1's 

 

• We encode symbol an as n + 1 1's 

 

• We encode move left as 1, and move right as 11 

1111011101111101110100101101101101100 

q3, a2, q4, a2, L q0, a1, q1, a1, R 

 

• Any Turing machine can be encoded as a unique long string of zeros and ones, 

beginning with a 1. 

• Let Tn be the Turing machine whose encoding is the number n. 

 

 

Linear Bounded Automata 

 

• A Turing machine that has the length of its tape limited to the length of the input string is 

called a linear-bounded automaton (LBA). 

•  A linear bounded automaton is a 7-tuple nondeterministic Turing machine M = (Q, S, G, 

d, q0,qaccept, qreject) except that: 

1. There are two extra tape symbols < and >, which are not elements of G. 

 

2. The TM begins in the configuration (q0<x>), with its tape head scanning the symbol 

< in cell 0.  The > symbol is in the cell immediately to the right of the input string x. 

3. The TM cannot replace < or > with anything else, nor move the tape head left of < or 

right of >. 

 



Context-Sensitivity 

 

• Context-sensitive production any production satisfying | |  

| 

• Context-sensitive grammar any generative grammar G =  , 

production in   context-sensitive. 

• No empty productions. 

 

 

 

 

such that every 

 

 

 

Context-Sensitive Language 

• Language L context-sensitive if there exists context-sensitive grammar G such that either 

L = L(G) or L = L(G)  { 

 

 

• Example: 

The language L = {anbncn : n  1} is a C.S.L. the grammar 

is S  abc/ aAbc, 

Ab  bA, 

AC  Bbcc, 

bB  Bb, 

aB  aa/ aaA 

 

The derivation tree of a3b3c3 is looking to be as following 

S ⇒ aAbc 

⇒ abAc 

 

⇒ abBbcc 

 

⇒ aBbbcc ⇒ aaAbbcc 

 

⇒ aabAbcc 

 

⇒ aabbAcc ⇒ aabbBbccc 

 

⇒ aabBbbccc 

 

|. 

 

}. 



⇒ aaBbbbccc 

 

⇒ aaabbbccc 



CSG = LBA 

 

• A language is accepted by an LBA iff it is generated by a CSG. 

 

• Just like equivalence between CFG and PDA 

 

• Given an x  CSG G, you can intuitively see that and LBA can start with S, and 

nondeterministically choose all derivations from S and see if they are equal to the input 

string x. Because CSL’s are non-contracting, the LBA only needs to generate derivations 

of length  |x|. This is because if it generates a derivation longer than |x|, it will never be 

able to shrink to the size of |x|. 

 

 

 

UNIT V 

 

Chomsky Hierarchy of Languages 

 

• A containment hierarchy (strictly nested sets) of classes of formal grammars 

 

 

 

 

The Hierarchy 

 

Class Grammars Languages Automaton 

Type-0 Unrestricted Recursively enumerable Turing machine 

(Turing-recognizable) 

 



none Recursive Decider 



(Turing-decidable) 

 

Type-1 Context-sensitive Context-sensitive Linear-bounded 

 
Type-2 Context-free Context-free Pushdown 

Type-3 Regular Regular Finite 

 

 

 

 

 

Type 0 Unrestricted: 

 

Languages defined by Type-0 grammars are accepted by Turing machines . 

 

Rules are of the form: α → β, where α and β are arbitrary strings over a vocabulary V and 

α ≠ ε 

 

Type 1 Context-sensitive: 

 

Languages defined by Type-1 grammars are accepted by linear-bounded automata. 

Syntax of some natural languages (Germanic) 

Rules are of the form: 

 

αAβ → αBβ 

S → ε 

where 

A, S ∈ N 

α, β, B ∈ (N ⋃Σ)∗ 
 

B ≠ ε 

 

Type 2 Context-free: 

 

Languages defined by Type-2 grammars are accepted by push-down automata. 

Natural language is almost entirely definable by type-2 tree structures 

Rules are of the form: 

 

A → α 

 



Where 



A ∈ N 

 

α ∈ (N ⋃ Σ)∗ 
 

 

Type 3 Regular: 

 

Languages defined by Type-3 grammars are accepted by finite state automata 

Most syntax of some informal spoken dialog 

Rules are of the form: 

 

A → ε 

A → α 

A → αB 

where 

 

A, B ∈ N and α ∈ Σ 

 

 

 

 

 

The Universal Turing Machine 

 

➢ If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any 

Tm on any tape that it is given? 

 

➢ Yes. This machine is called the Universal Turing machine. 

 

➢ How would we build a Universal Turing machine? 

 

➢ We place an encoding of any Turing machine on the input tape of the Universal 

Tm. 



➢ The tape consists entirely of zeros and ones (and, of course, blanks) 

 

➢  Any Tm is represented by zeros and ones, using unary notation for elements and 

zeros as separators. 

➢ Every Tm instruction consists of four parts, each a represented as a series of 1's and 

separated by 0's. 

➢ Instructions are separated by 00. 

 

➢ We use unary notation to represent components of an instruction, with 

 

➢ 0 = 1, 

 

➢ 1 = 11, 

 

➢ 2 = 111, 

 

➢ 3 = 1111, 

 

➢ n = 111...111 (n+1 1's). 

 

➢ We encode qn as n + 1 1's 

 

➢ We encode symbol an as n + 1 1's 

 

➢ We encode move left as 1, and move right as 11 

 

1111011101111101110100101101101101100 

 

q3, a2, q4, a2, L q0, a1, q1, a1, R 

 

➢ Any Turing machine can be encoded as a unique long string of zeros and ones, beginning 

with a 1. 

➢ Let Tn be the Turing machine whose encoding is the number n. 

 

 

Turing Reducibility 

 

• A language A is Turing reducible to a language B, written A T B, if A is 

decidable relative to B 

• Below it is shown that ETM is Turing reducible to EQTM 

 

• Whenever A is mapping reducible to B, then A is Turing reducible to B 

 



– The function in the mapping reducibility could be replaced by an oracle 

 

• An oracle Turing machine with an oracle for EQTM can decide ETM 



TEQ-TM = “On input <M> 

1. Create TM M1 such that L(M1) =  

M1 has a transition from start state to reject state for every element of  

1. Call the EQTM oracle on input <M,M2> 

 

2. If it accepts, accept; if it rejects, reject” 

 

• TEQ-TM decides ETM 

• ETM is decidable relative to EQTM 

 

• Applications 

• If A T B and B is decidable, then A is decidable 

• If A T B and A is undecidable, then B is undecidable 

• If A T B and B is Turing-recognizable, then A is Turing-recognizable 

• If A T B and A is non-Turing-recognizable, then B is non-Turing-recognizable 

 

 

 

 

The class P 

 

A decision problem D is solvable in polynomial time or in the class P, if there exists an 

algorithm A such that 

• A Takes instances of D as inputs. 

• A always outputs the correct answer “Yes” or “No”. 

• There exists a polynomial p such that the execution of A on inputs of size n always 

terminates in p(n) or fewer steps. 

• EXAMPLE: The Minimum Spanning Tree Problem is in the class P. 

 

The class P is often considered as synonymous with the class of computationally 

feasible problems, although in practice this is somewhat unrealistic. 

 

 

The class NP 

 

A decision problem is nondeterministically polynomial-time solvable or in the class NP if 

there exists an algorithm A such that 

• A takes as inputs potential witnesses for “yes” answers to problem D. 

• A correctly distinguishes true witnesses from false witnesses. 



• There exists a polynomial p such that for each potential witnesses of each instance of 

size n of D, the execution of the algorithm A takes at most p(n) steps. 

• Think of a non-deterministic computer as a computer that magically “guesses” a 

solution, then has to verify that it is correct 

o If a solution exists, computer always guesses it 

o One way to imagine it: a parallel computer that can freely spawn an infinite 

number of processes 

▪ Have one processor work on each possible solution 

 

▪ All processors attempt to verify that their solution works 

 

▪ If a processor finds it has a working solution 

 

o So: NP = problems verifiable in polynomial time 

o Unknown whether P = NP (most suspect not) 

 

 

NP-Complete Problems 

 

• We will see that NP-Complete problems are the “hardest” problems in NP: 

o If any one NP-Complete problem can be solved in polynomial time. 

o Then every NP-Complete problem can be solved in polynomial time. 

o And in fact every problem in NP can be solved in polynomial time (which would 

show P = NP) 

o Thus: solve hamiltonian-cycle in O(n100) time, you’ve proved that P = NP. Retire 

rich & famous. 

• The crux of NP-Completeness is reducibility 

 

o Informally, a problem P can be reduced to another problem Q if any instance of P 

can be “easily rephrased” as an instance of Q, the solution to which provides a 

solution to the instance of P 

▪ What do you suppose “easily” means? 

 

▪ This rephrasing is called transformation 

 

o Intuitively: If P reduces to Q, P is “no harder to solve” than Q 

• An example: 

 

o P: Given a set of Booleans, is at least one TRUE? 

o Q: Given a set of integers, is their sum positive? 



o Transformation: (x1, x2, …, xn) = (y1, y2, …, yn) where yi = 1 if xi = TRUE, yi 

= 0 if xi = FALSE 

• Another example: 

 

o Solving linear equations is reducible to solving quadratic equations 

▪ How can we easily use a quadratic-equation solver to solve linear 

equations? 

• Given one NP-Complete problem, we can prove many interesting problems NP-Complete 

 

o Graph coloring (= register allocation) 

o Hamiltonian cycle 

o Hamiltonian path 

o Knapsack problem 

o Traveling salesman 

o Job scheduling with penalties, etc. 

NP Hard 

 

• Definition: Optimization problems whose decision versions are NP- complete are 

called NP-hard. 

 

• Theorem:   If there exists a polynomial-time algorithm for finding the optimum in 

any NP-hard problem, then P = NP. 

Proof: Let E be an NP-hard optimization (let us say minimization) problem, and let A 

be a polynomial-time algorithm for solving it. Now an instance J of the corresponding 

decision problem D is of the form (I, c), where I is an instance of E, and c is a 

number. Then the answer to D for instance J can be obtained by running A on I and 

checking whether the cost of the optimal solution exceeds c. Thus there exists a 

polynomial-time algorithm for D, and NP-completeness of the latter implies P= NP. 



 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15. Additional Topics 

• Two Way Finite Automata 

• Proof of Closure properties of Regular Languages 

• Two Stack Pushdown Automata 

• CYK Algorithm for CFL 

• Cooks’s Theorem 

 

 

 

 

16. University Question Papers 
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17. Question Bank:Descriptive Type Questions - Unit Wise 

 

 

UNIT I 

 

1. Explain the Finite automation how the language constructs can be recognized? 

2. List out the Finite automata’s? 

3. Define: string, sub string, transitive closure and reflexive transitive closure? 

4. Describe the finite state machine with a block diagram. 

5. Construct DFA to accept the language of all strings of even numbers of a’s & 

numbers of b’s divisible by three over (a+b)*. 

 

6. Explain the procedure to convert NFA to DFA. 

7. What are the Finite automates with output and explain them with the suitable 

Examples. 

8. Explain the procedure to minimize the DFA for the given regular expression. 

9. a) Construct a Mealy machine similar to (well equivalent to except for Ms’s 

initial output) the following Moore machine. 

 

 0 1  
A B C 0 

B C B 1 

C A C 0 

 

 

b) Construct a Moore machine similar to the following Mealy machine. 

 

 0 1 

A B, 0 C, 1 

B C, 1 B, 1 

C A, 1 C, 0 

 

 

10. Give Mealy and Moore machines for the following processes: 

a) For input from (0 + 1)*, if the input ends in 101, output A; if the input ends 

in 110, output B; otherwise output C. 

b) For input from (0 + 1 + 2)*, print the residue modulo 5 of the input treated 

as a ternary (base 3, with digits 0, 1, and 2) number. 
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UNIT II 

 

1. Define the Regular Expression. 

2. Write the Identity Rules for RE 

3. Construct the FA for the Regular Expression (a/b)*abb. 

4. Obtain the minimized DFA for the RE (a/b)*abb. 

5. Explain the Pumping Lemma for the regular sets. 

6. What are the properties of regular sets? 

 

7. Define the grammar and what are the types of grammars? 

 

8. Consider the grammar E->E + E | E * E | id. 

Write the right-most derivation and left most derivation for the sentence id*id+id. 

9. Explain right linear and left linear grammar, with a example? 

10. Construct a regular grammar G generating the regular set represented by a*b 

(a+b)*. 

11. If a regular grammar G is given by S  aS/a, find regular expression for L (G). 

 

UNIT III 

 

1. What is an ambiguity? 

2. What does an ambiguity trouble in the CFG? 

3. What are the techniques used to minimize the CFG? 

4. Explain the CNF and GNF with an example. 

 

5. Explain Pumping Lemma for context free grammars? 

 

6. Explain the concept of push down automata? 

 

7. Write the push down automata to accept the language {ww* | w e {0, 1}} 

8. Explain the equivalence of CFL and PDA. 

9. Construct PDA equivalent to the following grammar: S  aAA, A  aS/bS/a. 

 

Show that the set of all strings over {a, b} consisting of equal numbers of a’s and 

b’s accepted by a PDA. 

 

UNIT IV 

 

1. Solve the problem using the TM, [anbcn | where n is an odd] 

2. Explain the steps required to design the TM. 

3. Explain the Counter machines with suitable example. 

4. Design a Turing Machine to accept the string that equal number of 0’s and 1’s. 

5. Design a Turing Machine to recognize the language {1n2 n 3 n /n≥1}. 

 

6. What is meant by linear bounded automata? 
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 UNIT V 

 

1. Explain the Chomsky hierarchy of languages 

2. Explain the Universal TM? 

3. Explain the P and NP problems? 

4. Explain the Decidability of Problems. Give an example. 

5. Explain Post Correspondence Problem. 

 

 

 

18. ASSIGNMENT QUESTIONS 

UNIT-I 

 

1. a) Given L1={a,ab,a2} and L2={b2,aa} are the languages over A={a,b}. 

Determine i) L1L2 and ii) L2L1. 

b) Given A={a, b, c} find L* where i)L={b2} ii) L={a, b} and iii) L={a,b,c3}. 

c) Let L= {ab, aa, baa} which of the following strings are in L* 

i) abaabaaabaa and ii) aaaaabaaaab. 

 

2. Determine which of the following strings are accepted by the given Finite Automata 

i) 0011 ii) 0100 and iii) 0101011. 

 

3. a) Define The following terms: i) DFA and ii)NFA. 

 

b) Design a DFA which accepts set of all strings containing odd number of 0’s and odd 

number of 1’s. 

4. a) Convert the following NFA to DFA 
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b) Convert the following NFA with ԑ- transitions to without ԑ- transitions. 

 

 

 

5. a) Construct the minimum state automata for the following : Initial State :A Final State: D 

 

 
Q/∑ a b 

A B A 

B A C 

C D B 

D D A 

E D F 

F G E 

G F G 

H G D 

 

b) Design FA to accept strings with ‘a’ and ‘b’ such that the number of b’s are divisible by 3 

 

6. a) Design DFA for the following languages shown below: ∑={a,b} 

 

i) L= {w| w does not contain the substring ab}. 

 

ii) L= {w| w contains neither the substring ab not ba}. 

 

iii) L= {w| w is any string that does not contain exactly two a’s}. 

 

7. Design a Moore and Mealy machine to determine the residue mod 5 for each ternary 

string (base 3) treated as ternary integer. 

8. Construct the Moore machine for the given Mealy machine 
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9. Construct the Mealy machine for the following Moore machine 

 

Present 
State 

Next State 
i/p=0 p=1 

output 

q0 q1 q2 1 

q1 q3 q2 0 

q2 q2 q1 1 

q3 q0 q3 1 

10. Design an NFA for the following 

 

i) L={ abaan | n≥ 1} 

ii) To accept language of all strings with 2 a’s followed by 2 b’s over {a,b}. 

 

iii) To accept strings with a’s and b’s such that the string end with bb. 

 

 

 

 

 

1. a)Define Regular Expression. 

UNIT-II 

b) List the Identity Rules of Regular sets. 

c) Prove the following 

i) ԑ+1*(011)*(1* (011)*)* = (1+011)* 

ii) (1=00*1)+(1+00*1)(0+10*1)*(0+10*1) = 0*1(0+10*1)* 

iii) (rs+r)*r=r(sr+r)* 

 

2. a) Explain equivalence of NFA and regular expression. 

(OR) 

Prove that every language defined by a regular expression is also defined by Finite Automata 

b) Construct DFA for (a+b)*abb. 

 

3. Find the regular expression accepted by following DFA 

a) b) 
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4. a) State and prove pumping lemma for regular languages. Apply pumping lemma for 

following 

language and prove that it is not regular L={ambn | gcd(m,n) = 1}. 

b) Show that L= {an! |n>=1} is not regular. 

 

5. a) Obtain a regular expression to accept strings of a’s and b’s such that every block of four 

consecutive symbols contains at least two a’s. 

b) Give regular expression for representing the set L of strings in which every 0 is immediately 

at least two 1’s. 

c) Find the regular expression for the language L={a2nb2m|n≥0, m≥0}. 

d) Find the regular expression for L= {w | every odd position of w is a 1} 

 

6. a) Define Regular Grammar. Explain in detail obtaining a right linear and left linear grammar 

for the 

following FA. 

b) Find the right linear grammar and left linear grammar for the regular expression 

(0+1)*010(1(0+1))* 

 

7. a) Explain the process of obtaining a DFA from the given Regular Grammar. 

b) Construct a DFA to accept the language generated by CFG: 

 

i) S 01A, A 10B, B 0A|11. ii). S Aa, A Sb|Ab| ɛ. 

 

8. a) Define Context Free Grammar. 

 

b) i)What is CFL generated by the grammar S  abB, A aaBb, B bbAa, A ɛ. 

ii) State in English about the language corresponding to below given grammar 
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S aB|bA, A a|aS|bAA, B b|bS|aBB. 

iii) Describe the language generated by the grammar S aAB, A bBb, B A| ɛ. 

 

c) i) Given the grammar G as S 0B|1A, A 0|0S|1AA, B 1|1S|0BB. Find leftmost and 

rightmost 

derivation and derivation tree for the string 00110101. 

 

ii) Construct the leftmost, rightmost derivation and parse tree for the following grammar 

which 

 

accepts the string aaabbabbba S aB|bA, A aS|bAA|a, B bS|aBB|b. 

 

9. Write the Context Free Grammar for the following languages 

 

i) L= {anbn|n≥1} 

ii) L= {aibjck|i=j} 

iii) Language of strings with unequal number of a’s and b’s. 

iv) L= {aibjck| i+j=k,i≥0, j≥0} 

v) L= {wwR| w is in (a,b)* and wR is the reversal of w} 

 

10. a) Write and explain all properties of regular sets. 

b) State and prove Arden’s theorem. 

 

 

 

 

 

 

 

UNIT-III 

1. a) Discuss Ambiguity, left recursion and factoring in context free grammar. 

 

b) Check whether the following grammars are ambiguous or not? 

i) S aAB, A bC|cd, C cd, B c|d. 

ii) E E+E|E-E|E*E|E/E|(E)|a. 

iii) S aS|aSbS|ԑ. 

 

c) Explain the process of eliminating ambiguity. 

 

2. a) Explain minimization or simplification of context free grammars. 

 

b) i) Eliminate Null productions in the grammar S ABaC, A BC, B b|ɛ, C D|ɛ, D d. 
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ii) Eliminate Unit productions in the grammar S AB, A a, B C, B b,C D,D E,E a. 

iii) Find a reduced grammar equivalent to the grammar G whose productions are 

S AB|CA, B BC|AB, A a, C aB|b. 

 

c) Simplify the following grammar: S AaB|aaB, A D, B bbA|ɛ, D E, E F, F aS. 

 

3. a) Explain Chomsky Normal Form. 

b) i) Find a grammar in CNF equivalent to the grammar S ~S|[S∩S]|p|q. 

ii) Find a grammar in CNF equivalent to G= S bA|aB, A bAA|aS|a, B aBB|bS|b. 

 

4. a) Explain Griebach Normal Form 

b) i) Convert the following grammar into GNF: E E+T|T, T T*F|F, F (E)|a. 

ii) Convert the following grammar into GNF: S Ba|ab, A aAB|a, B ABb|b. 

 

5. a) Explain and prove the pumping lemma for context free languages. 

 

b) Show that the following languages are not CFL 

i) L= {aibj |j=i2} ii) L={anbncj|n≤j≤2n} 

 

c) Consider the following grammar and find whether it is empty, finite or infinite 

i) S AB, A BC|a, B Cc|B, C a. 

ii) S AB, A BC|a, B CC|b, C a, C AB. 

6. a) Define Push Down Automata. Explain its model with a neat diagram. 

 

b) Explain ID of PDA 

 

c) Construct a PDA which accepts 

i) L= {a3bncn|n≥0} ii) L={ apbqcm | p+m=q} iii) L= {aibjck | i+j=k;i≥0,j≥0} 

7. a) Construct a CFG for the following PDA M=({q0,q1},{0,1},{Z0,X},δ,q0,Z0,ф) and δ is 

given by 

δ (q0,1,Z0)=(q0,XZ0), δ (q0,ԑ,Z0)=(q0, ԑ), δ (q0,1,X)=(q0,XX) 

 

δ (q1,1,X)=(q1, ԑ), δ (q0,0,X)=(q1,X), δ (q1,1,Z0)=(q0,Z0). 

 

b) Construct PDA for the grammar S aA, A aABC|bB|a, B b, C c. 

 

8. a) Construct a Two Stack PDA which accepts L={anbncn|nɛN} 

 

b) Design a Two Stack PDA which accepts L={anbnanbn | nɛN } 

9. a) Differentiate Deterministic PDA and Non- Deterministic PDA. 
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b) Explain acceptance of PDA by empty state and final state. 

 

c) Prove the equivalence of acceptance of PDA by empty state and final state. 

 

10. a) Explain the closure properties of Context Free Languages. 

 

b) Design a Non Deterministic PDA for the language L={0n1n| n≥ 1}. 

 

 

UNIT-IV 

1. a) Define Turing Machine. Explain its model with a neat diagram. 

b) Explain ID of a Turing Machine. 

c) Design a Turing machine which accepts the following languages 

i) L= {anbncn | n≥0}. 

ii) L= {a2nbn | n≥1}. 

iii) accepting palindrome strings over {a ,b}. 

 

2. a) Explain how a Turing Machine can be used to compute functions from integers to integers. 

 

b) Design a Turing Machine to perform proper subtraction m – n, which is defined as m-n for 

m ≥ n and zero for m < n. 

c) Design a Turing Machine to perform multiplication. 

 

3. Design a Turing machine to compute the following 

 

a) Division of Two integers b) 2’s complement of a given binary number 

 

4. Design a Turing machine to compute the following 

 

a) x2 b) n! c) log2 n 

 

5. a) Explain in detail various types of Turing Machines. 

 

b) List the properties of Recursive and Recursively Enumerable Languages. 

 

c) Explain the following 

 

i) Church’s Hypothesis ii) Counter Machin
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UNIT-V 

1. Explain the Chomsky Hierarchy with a neat diagram. 

 

2. Explain in detail the Universal Turing Machine. 

 

3. Explain the following 

 

a) Decidability b) Post Correspondence Problem c) Turing Reducibility 

 

4. Explain P and NP Classes. 

 

5. a) Define NP-Complete and NP-Hard Problems. 

 

b) Explain some NP-Complete Problems in detail. 

 

 

 

 

19. Unit Wise Objective Type Questions 

 

UNIT - I 

 

1. The prefix of abc is _ _ _ _ _ _ _ _ _ _ _ _ (d) 

a. c 

b. b 

c. bc 

d. a 

 

2. Which of the following is not a prefix of abc? (d) 

a. e 

b. a 

c. ab 

d. bc 

 

 

3. Which of the following is not a suffix of abc ? (d) 

a. e 

b. c 
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c. ab 

 

4. Which of the following is not a proper prefix of doghouse ? (d) 

a. dog 

b. d 

c. do 

d. doghouse 

 

5. Which of the following is not a proper suffix of doghouse ? (d) 

a. house 

b. se 

c. e 

d. doghouse 

 

 

 

 

 

6. If then the number of possible strings of length 'n' is _____________ (d) 

a. n 

b. n * n 

c. n n 

d. 2 n 

 

7. The concatenation of e and w is _ _ _ _ _ _ (b) 

a. e 

b. w 

c. ew 

d. can’t say 

 

8. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ is a set of strings . (a) 

a. Language 

b. grammar 

c. NFA 

d. DFA 

 

9. _ _ _ _ _ _ _ _ _ _ _ _ is a finite sequence of symbols. (c) 

a. Language 

b. grammar 
c. string 

d. NFA 

 

10. Let a is any symbol, x is a palindrome then which of the following is not a 

Palindrome. (d) 

a. e 

b. a 

c. axa 

d. xa 
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11. Let a is any symbol , x is a palindrome then which of the following is a palindrome. (a) 

a. e 

b. xa 

c. ax 

d. aax 

 

12. The basic limitation of FSM is that _ _ _ _ _ _ _ _ (a) 

a. it can't remember arbitrary large amount of information 

b. it sometimes recognizes grammars that are not regular 

c. it sometimes fails to recognize grammars that are regular 

d. it can remember arbitrary large amount of information 

 

13. The number of states of the FSM required to simulate the behavior of a computer witha 

memory capable of storing m words each of length n bits is ________ (b) 

a. m 

b. 

c. 2mn 

d. 2m 

 

 

14. We formally denote a finite automaton by ( Q, ,q0 , F) Where is the transition 

Function mapping from Q X to ______ (a) 

a. Q 

b. 

c. q0 

d. F 

 

15. Application of Finite automata is _________________ (a) 

a. Lexical analyzer 

b. parser 

c. scanner 

d. semantic analyzer 

 

16. An FSM can be used to add two given integers .This is ________________________ (b) 

a. true 
b. false 

c. may be true 

d. can't say 

 

17. We formally denote a finite automaton by a ____________ tuple. (c) 

a. 3 

b. 4 

c. 5 

d. 6 
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18. We formally denote a finite automaton by Where Q is _ _ _ (a) 

a. a finite set of states 

b. finite input alphabet 

c. initial state 

d. A set of final states 

 

19. We formally denote a finite automaton by Where is _ _ _ (b) 

a. a finite set of states 

b. finite input 

acl.p ihniatbiaelt state 

d. A set of final states 

 

20. We formally denote a finite automaton by Where Q is _ _ _ (c) 

a. a finite set of states 

b. finite input alphabet 

c. initial state 

d. A set of final states 

 

21. We formally denote a finite automaton by Where F is _ _ _ (d) 

a. a finite set of states 

b. finite input alphabet 

c. initial state 

d. A set of final states 

 

 

 

 

 

 

22. An automation is a _ _ _ _ _ _ _ _ _ _ _ _ _ device (b) 

a. generative 

b. cognitive 

c. acceptor 

d. can't say 

 

23. A grammar is a _ _ _ _ _ _ _ _ _ _ _ _ _ device (a) 

a. generative 

b. cognitive 
c. acceptor 

d. can't say 

 

24. An FSM can be used to add two given integers .This is ______________ (b) 

a. true 

b. false 

c. may be true 

d. can't say 
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25. An FSM can be used to perform subtracttion of given two integers .This is _ _ (b) 

a. true 

b. false 

c. may be true 

d. can't say 

 

26. The word formal in formal languages means _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. the symbols used have well defined meaning 

b. they are unnecessary in reality 

c. only the form of the string of symbols is significant 

d. only the form of the string of symbols is not significant 

 

27. The recognizing capability of NDFSM and DFSM [04S02] (c) 

a. may be different 

b. must be different 

c. must be same 

d. may be same 

 

28. Any given transition graphs has an equivalent _ _ _ _ _ _ _ _ _ _ _ _ _ _ (d) 

a. RE 

b. DFA 

c. NFA 

d. DFA, NFA, RE 

 

29. Finite state machine ________________________ recognize palindromes 

(b) 

a. can 

b. can't 

c. may 

d. may not 

 

30. FSM can recognize _ _ _ _ _ _ _ _ _ _ (d) 

a. any grammar 

b. only CFG 

c. any unambiguous grammar 

d. only regular grammar 

 

 

31. Palindromes can _ t be recognized by any FSM because (a) 

a. FSM can't remember arbitrarily large amount of 

b FSM cannot deterministically fix the mid point 

c even of the mid-point is known, an FSM cannot find whether the second half of the 

string matches the first half 

d FSM can remember arbitrarily large amount of information 

 

32. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then ( q0 , 110101 ) _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. q0 
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b. q2 

c. q3 

 

33. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then L(M) is the set of strings with _ _ _ _ number of 0's and _____________ Number of 1's . 

(c) 

a. odd, odd 

b. odd, even 

c. even, even 

d. even, odd 

 

34. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then ( q0 , 110) _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. q0 

b. q1 

c. q2 

d. q3 

 

35. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then which of the following is accepted _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. 110101 

b. 11100 

c. 00011 

d. 111000 

 

36. Let M = ( Q,S, ,q0 , F) , F= { q0 } , S= {0,1 }. : 

Then which of the following is not accepted ____________________ (d) 

a. 11101 

b. 110001 

c. 0011 

d. 1101 

 

37. In transition diagrams states are represented by _ _ _ _ _ _ _ _ _ _ _ _ (b) 

a. ellipses 

b. circles 

c. triangles 

d. rectangles 

 

38. In transition diagrams a state pointed by an arrow represents the _ _ _ _ _ _ _ state. (c) 

a. final 
b. interior 

c. start 

d. final or start 

 

 

39. In transition diagrams a state encircled by another represents _ _ _ _ _ _ _ state. (a) 

a. final 

b. interior 
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c. start 

d. final or start 

 

 

40. NFA stands for _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. Non deterministic finite automaton 

b. Non deterministic finite analysis 

c. Non deterministic finite acceptance 

d. Non deterministic finite authorization 

 

41. Consider the following NFA 

Now ( q0, 01 ) = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. {q0, q1} 

b. {q0 , q3,q4 } 

c. {q0 , q1, q4 } 

d. {q4 } 

 

42. Consider the following NFA 

Now ( q0, 010) = _ _ _ _ _ _ _ _ _ _ (b) 

a. {q0 , q1 } 

b. {q0 q3} 

c. {q0 , q1, q4 } 

d. {q4 } 

 

43. Consider the following NFA 

Now ( q0, 01001 ) = _ _ _ _ _ _ _ _ _ _ (c) 

a. {q0 , q1 } 

b. {q0 , q3 } 

c. {q0 , q1,q4} 

d. {q4 } 

 

44. Consider the following NFA 

Now ( q0, 0 ) = _ _ _ _ _ _ _ _ _ _ (c) 

a. {q0 , q1 } 

b. {q0 , q3 } 

c. {q0 , q1,q4} 

d. {q4 } 

 

45. Let NFA has a finite number n of states ,the DFA will have at most ____________ states. 

(d) 

a. 2n 

b. n/2 

c. n 2 

d. 2 n 

46. Let NFA has a finite number 6 of states ,the DFA will have at most ____________ states. 

(d) 

a. 12 

b. 2 
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c. 36 

d. 64 

 

47. Can a DFA simulate NFA ? [08S01] (b) 

a. No 

b. Yes 

c. sometimes 

d. depends on NFA 

 

48. The DFA start state = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. NFA start state 

b. NFA final state 

c. closure( NFA start state ) 

d. closure ( NFA final state) 

 

49. Let maximum number of states in a DFA =64 . 

Then it's equivalent NFA has _ _ _ _ _ _states. (d) 

a. 2 

b. 4 

c. 8 

d. 6 

 

50. Let maximum number of states in a DFA =128 . 

Then its equivalent NFA has _ _ _ _ _ _ states. (b) 

a. 5 

b. 7 

c. 8 

d. 9 

 

51. Let maximum number of states in a DFA =1024. 

Then it's equivalent NFA has _ _ _ _ _ states. (c) 

a. 5 

b. 7 

c. 10 

d. 11 

 

52. Choose the wrong statement (d) 

a. Moore and mealy machines are FSM's with output capability 

b. Any given moore machine has an equivalent mealy machine 

c. Any given mealy machine has an equivalent moore machine 

d. Moore machine is not an FSM 

 

53. Choose the wrong statement (d) 

a. A mealy machine generates no language as such 

b. A Moore machine generates no language as such 

c. A Mealy machine has no terminal state 

d. A Mealy machine has terminal state 
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54. The major difference between a mealy and a moore machine is that (b) 

a. The output of the former depends on the present state and present input 

b. The output of the former depends only on the present stste 

c. The output of the former depends only on the present input 

d. The output of the former doesn't depends on the present state 

 

55. In moore machine shows _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. states 

b. input alphabet 

c. output alphabet 

d. Final state 

 

56. A melay machine is a _ _ _ _ _ _ _ _ _ _ tuple. (d) 

a. 4 

b. 5 

c. 7 

d. 6 

UNIT- II 

 

57. In case of regular sets the question ' is the intersection of two languages a language of the 

same type ?' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. Decidable 

b. Un decidable 

c. trivially decidable 

d. Can't say 

 

58. In case of regular sets the question 'is the complement of a language also a language of the 

same type ? ' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. Decidable 

b. Un decidable 

c. trivially 

dd.e Cciadna'tb slaey 

 

59. In case of regular sets the question ' is L1 n L2 = F ? ' is _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

60. In case of regular sets the question ' is L=R where R is a given regular set ?' is _______ (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 
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61. In case of regular sets the question ' is L regular?' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

62. In case of regular sets the question 'Is w in L? 'Is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

(a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

63. In case of regular sets the question 'is L = F? 'Is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

64. In case of regular sets the question 'is L = *? Is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

65. In case of regular sets the question ' is L1 = L2? ‘is _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

66. In case of regular sets the question 'is L1subset or equal to L2? ‘Is _ _ _ _ _ _ (a) 

a. Decidable 

b. Undecidable 

c. trivially decidable 

d. Can't say 

 

67. The regular expression (1 + 10) * denotes all strings of 0's and 1's beginning with _ _ _ _ _ _ 

_ _ _ _ _ _ _ and not having two consecutive _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. 1, 0's 

b. 0, 1's 
c. 0, 0's 

d. 1, 1's 

 

68. Let r and s are regular expressions denoting the languages R and S. 

Then (r + s) denotes _ _ _ _ _ _ _ _ _ _ _ (c) 

a. RS 

b. R* 

c. RUS 

d. R+ 
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69. Let r and s are regular expressions denoting the languages R and S. 

Then (r s) denotes _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. RS 

b. R* 

c. RUS 

d. R+ 

 

 

 

70. Let r and s are regular expressions denoting the languages R and S. 

Then ( r*) denotes _ _ _ _ _ _ _ _ _ _ (b) 

a. RS 

b. R* 

c. RUS 

d. R+ 

 

71. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ denotes all strings of 0,s and 1,s. (d) 

a. ( 0+1) 

b. 01 

c. 0* 1 

d. ( 0+ 1)* 

 

72. (0+1) * 011 denote all strings of 0's and 1's ending in _ _ _ _ _ _ _ _ _ _ _ (c) 

a. 0 

b. 0111 

c. 011 

d. 111 

 

73. Let r, s, t are regular expressions. (r* s *) * = __________________________________ (c) 

a. ( r-s)* 

b. (r s)* 

c. ( r +s)* 

d. (s-r)* 

 

74. Let r, s, t are regular expressions. ( r + s)* = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. r *s* 

b. (rs)* 

c. (r* s *) * 

d. r *+s* 

 

75. Let r, s, t are regular expressions. ( r* )* = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (b) 

a. r 
b. r* 

c. F 

d. can’t say 

 

76. Let r, s, t are regular expressions. ( e + r )* = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 
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a. r 
b. e 

c. r* 

d. e r 

 

77. Let r, s, t are regular expressions. r + s = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (b) 

a. r s 

b. s + r 

c. s r 

d. r / s 

 

 

 

 

 

 

78. Let r, s, t are regular expressions. ( r + s) +t = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. r +(s +t) 

b. r s t 

c. r t 
d. s t 

 

79. Let r, s, t are regular expressions. ( r s ) t = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. r s 

b. r t 
c. r(st) 

d. s t 

 

80. Let r, s, t are regular expressions. r( s+ t) = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (d) 

a. r s 

b. r t 
c. rs - r t 

d. rs +r t 

 

81. Let r, s, t are regular expressions. (r + s) t = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. r t +st 

b. (r-s)t 

c. (rs) t 

d. t(rs) 

 

82. In NFA for r=e the minimum number of states are_______________________________ (b) 

a. 0 

b. 1 

c. 2 

d. 3 

 

83. In NFA for r=F the minimum number of states are _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. 0 
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b. 1 

c. 2 

d. 3 

 

84. In NFA for r=a the minimum number of states are_______________________________ (c) 

a. 0 

b. 1 

c. 2 

d. 3 

 

85. ( e + 00 )* = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (d) 

a. e 

b. 0 

c. e 0 

d. (00 )* 

 

86. 0 (00)* ( e + 0)1 + 1 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. 00* 1 + 1 

b. 00* 1 

c. 0 *1 +1 

d. 00*+1 

 

 

87. 1 + 01 = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (b) 

a. e + 0 

b. (e + 0) 1 

c. 1 (e +0) 

d. 101 

 

88. Let f(0) =a and f(1) =b* Then f(010) = _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (c) 

a. a 

b. b* 

c. a b* a 

d. aba 

 

89. Let f(0)=a and f(1) = b* If L is the language 0*(0+1)1* then f(L)= _ _ _ _ (d) 

a. ab 

b. a b* 

c. b* 

d. a* b* 

 

90. Let L1 be 0*10* and L2 be 1 0* 1 The quotient of L1 and L2 is _ _ _ _ _ _ _ (a) 

a. empty 

b. 0* 

c. 1 

d. 10* 

 

91. Let L1 be 0*10* and L2 be 0* 1 The quotient of L1 and L2 is _ _ _ _ _ _ _ (b) 

a. empty 
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b. 0* 

c. 1 

d. 10* 

 

92. Let L1 be 10* 1 and L2 be 0* 1 The quotient of L1 and L2 is _ _ _ _ _ _ _ (d) 

a. empty 

b. 0* 

c. 1 

d. 10* 

 

93. 'The regular sets are closed under union' is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. True 

b. False 

c. True or False 

d. can't say 

 

94. 'The regular sets are closed under concatenation' is _ _ _ _ _ _ _ _ (a) 

a. True 

b. False 

c. True or False 

d. can't say 

 

 

95. 'The regular sets are closed under kleene closure' is _ _ _ _ _ _ _ _ _ _ (a) 

a. True 

b. False 

c. True or False 

d. can't say 

 

96. 'The regular sets are closed under intersection' is _ _ _ _ _ _ _ _ _ _ _ _ _ (a) 

a. True 

b. False 

c. True or False 

d. can't say 

 

97. The class of regular sets is closed under complementation .That is if L is a regular set and L 

is 

subset or equal to * then _ _ _ _ _ _ _ _ _ _ _ _ _ is regular set (d) 

a. 

b. * 
c. * + L 

d. * - L 

 

 

 

UNIT – III 

 

98. Regular grammars also known as _ _ _ _ _ _ _ _ _ _ _ _ grammar. (d) 
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a. Type 0 

b. Type 1 

c. Type 2 

d. Type3 

 

99. _ _ _ _ _ _ _ _ _ _ _ _ _ _ grammar is also known as Type 3 grammar. (d) 

a. un restricted 

b. context free 

c. context sensitive 

d. regular grammar 

 

100. Which of the following is related to regular grammar ? (c) 

a. right linear 

b. left linear 

c. Right linear & left linear 

d. CFG 

 

101. Regular grammar is a subset of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ grammar. (d) 

a. Type 0 . 

b. Type 1 

c. Type 2 

d. Type 0,1 &2 

 

102. P,Q, R are three languages .If P and R are regular and if PQ=R then (c) 

a. Q has to be regular 

b. Q cannot be regular 

c. Q need not be regular 

d. Q has to be a CFL 

 

 

 

 

 

 

 

103. Let A = {0,1 } L= A * Let R = { 0 n1n , n >0 } then LUR is regular and R is _ _ (b) 

a. regular 

b. not regular 

c. regular or not regular 

d. can`t say 

 

104. Let L1 =(a+b) * a L2 =b*(a+b) 

L1 intersection L2 = _ _ _ _ _ _ _ _ _ _ (d) 

a. (a+b) * ab 

b. ab ( a+b) * 

c. a ( a+b) * b 

d. b( a+b)*a 
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105. Let L denote the language generated by the grammar S0s0100 then (c) 

a. L= 0 + 

b. L is CFL but not regular 

c. L is regular but not 0 + 

d. L is not context free 

 

106. Let A = {0,1 } L= A * Let R = { 0 n1n , n >0 } then LUR _ _ _ _ _ _ _ _ _ _ _ (a) 

a. regular 

b. not regular 

c. regular or not regular 

d. can`t say 

 

107. Which of the following are regular? (d) 

a. string of 0`s whose length is a perfect square 

b. set of all palindromes made up of 0`s and 1`s 

c. strings of 0`s whose length is prime number 

d. string of odd number of zeros 

 

 

108. Pumping lemma is generally used for proving (b) 

a. a given grammar is regular 

b. a given grammar is not regular 

c. whether two given regular expressions are equivalent are not 

d. a given grammar is CFG 

 

109. Pick the correct statement the logic of pumping lemma is a good example of (a) 

a. the pigeon hole principle 

b. divide and conquer 

c. recursion 

d. iteration 

 

110. The logic of pumping lemma is a good example of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (d) 

a. iteration 

b. recursion 

c. divide and conquer 

d. the pigeon hole principle 

 

 

 

 

111. Let L1 = { n.m =1,2,3 ..... } 

L2 = { n ,m=1,2,3 ..... } 

L3 = { n =1,2,3 ..... } 

Choose the correct answer (a) 

a. L3= L1 intersection L2 

b. L1, L2 , L3 are CFL 

c. L1, L2 not CFL L3 is CFL 

d. L1 is a subset of L3 
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112. Choose the wrong statement (a) 

a. All languages can be generated by CFG 

b. Any regular language has an equivalent CFG 

c. Some non regular languages can _ t be generated by CFG 

d. Some regular languages can be simulated by an FSM 

 

113. In CFG each production is of the form Where A is a variable and is string of 

Symbols from _ _ _ _ _ _ _ _ _ _ ( V, T are variables and terminals ) (d) 

a. V 

b. T 

c. VUT 

d. *(VUT) 

 

114. Any string of terminals that can be generated by the following CFG (d) 

a. has atleast one b 

b. should end in a 'a' 

c. has no consecutive a's or b's 

d. has atleast two a's 

 

115. CFG is not closed under (c) 

a. union 

b. kleene star 

c. complementation 

d. product 

 

116. The set A= { n=1,2,3 ..... } is an example of a grammar that is (c) 

a. regular 

b. context free 

c. not context free 

d. can`t say 

 

117. Let G=(V,T,P,S) be a CFG. A tree is a derivation (or parse) tree for G if If vertex n has 

label ? then n is a _ _ _ _ node (d) 

a. root 

b. interior 

c. root or interior 

d. lea 

 

 

 

118. The vernacular language English ,if considered a formal language is a (b) 

a. regular language 
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b. context free language 

c. context sensitive language 

d. can`t say 

 

119. The language constructs which are most useful in describing nested structures such as 

balanced parentheses matching begin ends etc are _ _ _ _ _ _ _ _ (b) 

a. RE 

b. CFG 

c. NM CFG 

d. CSG 

 

120. CFL are closed under (c ) 

a. Union, intersection 

b. kleene closure 

c. Intersection, complement 

d. complement, kleene closure 

 

121. Recursively enumerable languages are accepted by? (a) 

a. TM 

b. FA 

c. PDA 

d. None 

 

122. The statement –‘ATM can’t solve halting problems (a) 

a. true 

b. false 

c. still an open question 

d. none of the above 

 

123. The language { 1n 2n 3n / n>=1} is recognized by? (c) 

a. FA 

b. PDA 

c. TM 

d. None of the above 

 

124. The language L (0^n 1^n 2^n where n>0) is a (b) 

a. context free language 

b. context sensitive language 

c. regular language 

d. recursively enumerable language 

 

125. Recursively enumerable languages are not closed under. (c) 

a. Union 

b. Intersection 

c. Complementation 

d. concatenation 
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126. The class of languages generated by ---- grammar is exactly the linear bounded languages. 

(b) 

a. RG 

b. CFG 

c. CSG 

d. PSG 

 

127. Which of the following is the most general phase-structured grammar? (b) 

a. regular 

b. context-sensitive 

c. context free 

d. none of the above 

 

128. The number of internal states of a UTM should be atleast (b) 

a. 1 

b.2 

c. 3 

d.4 

 

129. Context Sensitive Grammar (CSG) can be recognized by (b) 

a. Finite state automata 

b. 2-way linear bounded automata 

c. push down automata 

d. none of the above 

 

130. The language L= (0^n 1^n 2^R 3^R where n, R>0) is a (a) 

c. context free language 

d. context sensitive language 

c. regular language 

d. recursively enumerable language 

 

130.A Pushdown automata is. ... if there is at most one transition applicable to each configuration 

? 

 

a. Deterministic (a) 

 

b. Non Deterministic 

 

c. Finite 

 

d. Non Finite 

 

131. The idea of automation with a stack as auxiliary storage? (b) 

 

a. Finite automata 

 

b. Push down automata 

 

c. Deterministic automata 
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d. None of these 

132. Suppose ((p,a, ),(q, )) is a production in a push-down automaton. True or 

false: a  is popped from the stack if this production is used. 

b  is pushed onto the stack if this production is 

used. c  is popped from the stack if this production 

is used. d  is pushed onto the stack if this production 

is used. 

 

133. Which of the following is not accepted by DPDA but accepted by NDPDA () 

a. Strings end with a particular alphabet 

b. All strings which a given symbol present at least twice 

c. Even palindromes 

d. None 

 

134. PDA maintains (d) 

a. Tape 

b. Stack 

c. Finite Control Head 

d. All the ab 

 

 

 

UNIT - IV 

 

 

 

 

 Turing machine can be used to (c) 

a. Accept languages 

b. Compute functions 

c. a & b 

d. none 

 

 

136. Any turing machine is more powerful than FSM because (c) 

a.Tape movement is confined to one direction 

b. It has no finite state control 

c. It has the capability to remember arbitrary long input symbols 

d. TM is not powerful than FSM 
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137. In which of the following the head movement is in both directions (d) 

a. TM 

b.FSM 

c.LBA 

d.a& c 

 

138. A turing machine is (a) 

a. Recursively enumerable language 

b. RL 

c.CFL 

d.CSL 

 

139. Any Turning machine with m symbols and n states can be simulated by another TM with 

just 

2 s symbols and less than (d) 

a. 8mn states 

b.4mn+8states 

c. 8mn+ 4 states 

d. mn states 

 

UNIT - V 

 

134. Push down automata represents 

 

a. Type 0 Grammar 

b. Type 1 Grammar 

c. Type 2 Grammar 

d. Type 3 Grammar 

 

135. If every string of a language can be determined whether it is legal or 

illegal in finite time the 

language is called 

a. Decidable 

b.undecidable 

c.Interpretive 

d. Non deterministic 
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136. PCP having no solution is called (b) 

a. undecidability of PCP 

b.decidability of PCP 

c.Semi-decidability of PCP 

d None 

 

137. Which of the following is type- 2 grammar? (b) 

a. A→ α where A is terminal 

b. A→ α where A is Variable 

c. Both 

d. None 

 

 

20. Tutorial Problems 

 

UNIT-I 

 

1. Define epsilon closure. Find NFA without ε for the following NFA with ε 

where q0-initial state q3-final state 

 a b ε 

qo qo Ø q1 

q1 Ø {q3,q1} q2 

q2 q2 Ø {q1,q3} 

q3 Ø Ø Ø 

 

2 a) Construct DFA equivalent where initial and final state is q0 
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 0 1 

qo q0 q1 

q1 q1 {q0,q1} 

 

b )Construct DFA equivalent where initial state is A and final state is C 

 

 0 1 ε 

A A,B A C 

B C Ø Ø 

C C C A 

 

3. Minimize the FA given below and show both given and reduced FA’S are equivalent or 

not where q0-initial state q6-final state 

 0 1 

qo q1 q2 

q1 q3 q4 

q2 q5 q6 

q3 q3 q4 

q4 q5 q6 

q5 q3 q4 

q6 q5 q6 

 

4.a) Discuss about FA with output in detail 

 

b) Convert the following melay machine to moore machine 

 

 

 

 

 Input symbol=0 Input symbol=1 

 Nextstate output Nextstate output 

q0 q1 N q2 N 

q1 q1 Y q2 N 

q2 q1 N q2 Y 

 

 

5. a) Explain significance of NFA with ε transitions and write differences between NFA 

with ε and ordinary NFA.  Define NFA-ε transitions 
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 a=0 a=1 output 

qo q1 q2 1 

q1 q3 q2 0 

q2 q2 q1 1 

q3 q0 q3 1 

UNIT-II 

 

1. Define grammar, regular grammar, right linear grammar, left linear grammar with examples. 

 

2. a) what are the rules to construct regular grammar for a given finite automata 

 

b) Construct regular grammar for the given TT where q3 is final state 

 

 

 

 0 1 

qo q1 φ 

q1 q2 q1 

q2 q2 q3 

q3 q2 q1 

 

 

3. a) What are the rules to construct finite automata for a given regular grammar 

 

b) Construct FA recognizing L (G) where the grammar is 

 

S aS|bA|b 

A aA|bS|a 

4. a) Write short notes on context free grammar 

 

b) Obtain CFG to obtain balanced set of parentheses (that is every left parentheses should 

match with the corresponding right parentheses 

 

5.a) Define derivation, derivation tree, sentential form, LMD, RMD 

 

b) Find LMD, RMD, and DT for the string: 00110101 where the grammar is 

S 0B|1A 

A 0|0S|1AA 

B 1|1S|0BB 
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1. Given the grammar G as S 0B|1A, A 0|0S|1AA, B 1|1S|0BB. Find leftmost and 

rightmost derivation and derivation tree for the string 00110101. 

2. Construct the leftmost, rightmost derivation and parse tree for the following grammar 

which accepts the string aaabbabbba S aB|bA, A aS|bAA|a, B bS|aBB|b. 

3. Simplify the following grammar: S aA|aBB, A aAA|ɛ, B bB|bbC, C B. 

 

4. Simplify the following grammar: S AaB|aaB, A D, B bbA|ɛ, D E, E F, F aS. 

 

5. Convert the following grammar into CNF 

S aA|a|B|C, A aB|ɛ, B aA, C cCD, D abd. 

6. Convert the following grammar into GNF:S AB, A BS|b, B SA|a. 

 

7. Show that L={a nbn cn|n≥1} is not CFL. 

 

8. Construct a PDA accepting {anbn|n≥1} by Empty Stack and by final state. 

 

9. Construct PDA for the grammar S aA, A aABC|bB|a, B b, C c. 

 

 

UNIT-IV 

 

1. Design a Turing Machine M to accept the language L= {0n1n|n≥1}. 

2. Design a Turing Machine M to accept strings of the language L= {anbncn | n≥0}. 

 

3. Design a Turing Machine to perform proper subtraction m – n, which is defined as m-n for 

m ≥ n and zero for m < n. 

4. Design a Turing Machine to perform multiplication. 

 

5. Design a Turing Machine that gives two’s complement for the given binary representation 
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UNIT-V 

 

1. Show that the PCP with two lists x=(b,bab3,ba) and y=(b3,ba,a) has a solution. Give the 

solution sequence. 

2. Find the solution for PCP problem given below 

 

 List A List B 

i wi xi 

1 a aaa 

2 abaaa ab 

3 ab b 

 

3. Explain why the PCP with two lists x= (ab,b,b) and y=(ab2,ba,b2) has no solution? 

4. Consider the following Turing machine defined as M=({q0,q1,qA},{0,1},{0,1,B},,q0,B,{qA}) 

 

 a b B 

q0 (q1,b,R) (q1,a,L) (q1,b,L) 

q1 (qA,a,L) (q0,a,R) (q1,a,R) 

qA    

 

State whether for the string w=ab, Turing Machine halts? 

 

5. Show that the satisfiability problem is in Class NP? 

 

 

 

21. Known Gaps if any 

No Gaps for this course. 

 

22. Discussion topics 

1) Importance of formal languages and it use. 

2) Applications of automata theory. 

3) Types of finite automata and its application. 

4) Importance of FSM with outputs & what are they? 

5) Importance of grammar & its formalism. 
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6) Grammar Normalisation techniques 

7) Significance of push down automata 

8) Types of PDA & its conversions 

9) Significance of Turing machine 

10) Types of languages & its importance. 
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