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2. SYLLABUS

UNIT -1

Introduction to Finite Automata: Structural Representations, Automata and Complexity, the
Central Concepts of Automata Theory — Alphabets, Strings, Languages, Problems. Nondeterministic Finite
Automata: Formal Definition, an application, Text Search, Finite Automata with Epsilon-Transitions.
Deterministic Finite Automata: Definition of DFA, How A DFA Process Strings, The language of DFA,
Conversion of NFA with €-transitions to NFA without €-transitions. Conversion of NFA to DFA, Moore
and Melay machines .
UNIT - 11

Regular Expressions: Finite Automata and Regular Expressions, Applications of Regular
Expressions, Algebraic Laws for Regular Expressions, Conversion of Finite Automata to Regular
Expressions. Pumping Lemma for Regular Languages, Statement of the pumping lemma, Applications of
the Pumping Lemma. Closure Properties of Regular Languages: Closure properties of Regular languages,
Decision Properties of Regular Languages, Equivalence and Minimization of Automata.
UNIT - I

Context-Free Grammars: Definition of Context-Free Grammars, Derivations Using a Grammar,
Leftmost and Rightmost Derivations, the Language of a Grammar, Sentential Forms, Parse Tress,
Applications of Context-Free Grammars, Ambiguity in Grammars and Languages. Push Down Automata:
Definition of the Pushdown Automaton, the Languages of a PDA, Equivalence of PDA's and CFG's,
Acceptance by final state, Acceptance by empty stack, Deterministic Pushdown Automata. From CFG to
PDA, From PDA to CFG.
UNIT - IV

Normal Forms for Context- Free Grammars: Eliminating useless symbols, Eliminating €-
Productions. Chomsky Normal form Griebech Normal form. Pumping Lemma for Context-Free
Languages: Statement of pumping lemma, Applications R18 B.Tech. CSE Syllabus INTU HYDERABAD
65 Closure Properties of Context-Free Languages: Closure properties of CFL’s, Decision Properties of
CFL's Turing Machines: Introduction to Turing Machine, Formal Description, Instantaneous description,
The language of a Turing machine
UNIT -V

Types of Turing machine: Turing machines and halting Undecidability: Undecidability, A
Language that is Not Recursively Enumerable, An Undecidable Problem That is RE, Undecidable



Problems about Turing Machines, Recursive languages, Properties of recursive languages, Post's
Correspondence Problem, Modified Post Correspondence problem, Other Undecidable Problems, Counter

machines.

TEXT BOOKS :
1. “Introduction to Automata Theory Languages and Computation”.
Hopcroft H.E. andUllman J. D. Pearson Education.
2. Introduction to Theory of Computation —Sipser 2nd edition Thomson.

REFERENCES :
1. Introduction to Formal Languages , Automata Theory
and Computation —Kamala Krithivasan, Rama R
2. Introduction to Computer Theory, Daniel .A. Cohen, John Wiley.
3. Theory of Computation : A Problem — Solving
Approach- Kavi Mahesh,Wiley India Pvt. Ltd.
4. “Elements of Theory of Computation”, Lewis H.P. & Papadimition C.H. Pearson /PHI.
5. Theory of Computer Science — Automata languages and computation -
Mishra andChandrashekaran, 2nd edition, PHI.
6. Introduction to languages and the Theory of Computation, John C Martin, TMH.

3. Vision of the Department
To produce quality IT professionals, with an ability to adapt to ever changing IT needs of local,

national and international arena, through effective teaching & learning, interactions with alumni and

industry.
4. Mission of the Department
1. MI: To provide a holistic learning environment for students through ethical practices.

2. M2: To provide quality infrastructure through practical exposure to the latest technology

requirements.

3. M3: To train the students in soft skills to excel in placements and competitive exams at

higher level the industry ready.

4. M4: To have a healthy Industry - Institute interaction through faculty development
programs, student internships, guest lectures and using latest teaching learning

methodologies.

5. MS: To provide effective platform to meet the industrial requirement and provide

research-oriented environment for the faculty to meet the continuous societal needs.



6. PROGRAM EDUCATIONAL OBJECTIVES (PEOs) OF IT
DEPARTMENT

PEO NoO. PROGRAM EDUCATIONAL OBJECTIVES STATEMENTS

PEO1 GRADUATES WILL HAVE THE ABILITY TO ESTABLISH THEMSELVES
AS PRACTICING PROFESSIONALS IN INFORMATION TECHNOLOGY OR
RELATED FIELDS

PEO2 GRADUATES WILL APPLY THEIR PROGRAMMING SKILLS
WITH TEAM SPIRIT TO ADDRESS EVER-CHANGING INDUSTRIAL
REQUIREMENTS.

PEO3 GRADUATES WILL HAVE THE ABILITY TO ENGAGE IN LIFE-LONG
LEARNING FOR EFFECTIVE ADAPTATION TO TECHNOLOGICAL
DEVELOPMENTS

PROGRAM OUTCOMES (IT)

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals

and an engineering specialization to the solution of complex engineering problems.

Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
and engineering sciences.

Design/development of solutions: Design solutions for complex engineering problems and design
system components or processes that meet the specified needswith appropriate consideration for the
public health and safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of the
information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities with an
understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledgeto assess societal,



health, safety, legal and cultural issues and the consequentresponsibilities relevant to the professional
engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in
societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of
the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering
community and with society at large, such as, being able to comprehend and write effective reports
and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one‘s own work, asa member and leader in a team, to
manage projects and in multidisciplinary environments.

12. Lifelong learning: Recognize the need for, and have the preparation and ability to engage in
independent and lifelong learning in the broadest context of technological change.

+ Programme Specific Qutcomes:

PSO1: The IT graduates will work as software engineers for providing solutions to real world
problems using structured and object oriented programming languages and open source software.

PSO2: The IT graduates will work as System engineer, Software analyst and Tester for IT and ITes.



6. Course Objectives & Course OQutcomes

Course Objectives

The aim of this course is,

» To define mathematical methods of computing devices, called abstract machines,
namely Finite Automata, Pushdown Automata, and Turning Machines.

« To study the capabilities of these abstract machines.

» To classify machines by their power to recognize languages.

* Employ finite state machines to solve problems in computing

* Explain deterministic and non- deterministic machines.

+ Identify different formal language classes and their relationships

* Design grammars and recognizers for different formal languages

* Determine the decidability and intractability of computational problems

* Comprehend the hierarchy of problems arising in the computer sciences

Course Description

This course provides an introduction to the theory of computation, including formal
languages, grammars, automata theory, computability, and complexity.

Course Outcomes

1.Students would be able to explain basic concepts in formal language theory,
grammars, automata theory, computability theory, and complexity theory.

2. The student will be able to demonstrate abstract models of computing, including
deterministic (DFA), non-deterministic (NFA), Push Down Automata(PDA) and
Turing (TM) machine models and their power to recognize the languages.

3 The student will be able to explain the application of machine models anddescriptors
to compiler theory and parsing. Students will be able to explain the
relationship among language classes and grammars with the help of
Chomsky Hierarchy.

4. Students will be able to relate practical problems to languages, automata,
computability, and complexity.



7. Brief Notes on importance of course and how it fits into the curriculum

FORMAL LANGUAGES AND AUTOMATA THEORY

This is an introductory course on formal languages, automata, computability and related
matters. These topics form a major part of what is known as the theory of computation.

The theory of computation or computer theory is the branch of computer science and
mathematics that deals with whether and how efficiently problems can be solved on a model of
computation, using an algorithm. The field is divided into two major branches: computability
theory and complexity theory, but both branches deal with formal models of computation.

The purpose of this course is to acquaint the student with an overview of the theoretical
foundations of computer science from the perspective of formal languages.
* Classify machines by their power to recognize languages.
* Employ finite state machines to solve problems in computing.
* Explain deterministic and non-deterministic machines.
* Comprehend the hierarchy of problems arising in the computer sciences.

MOTIVATION

e Automata = abstract computing devices.
e Turing studied Turing Machines (=computers) before there were any real computers.

e We will also look at simpler devices than Turing machines (Finite State Automata, Push-
down Automata, . . . ), and specification means, such as grammars and regular
expressions.

e NP-hardness = what cannot be efficiently computed


http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Model_of_computation
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computability_theory_%28computer_science%29
http://en.wikipedia.org/wiki/Computability_theory_%28computer_science%29
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Model_of_computation

COURSE DESCRIPTION

This course will provide a foundation to the “Theory of Computation”. The student will
realize that the sometimes-chaotic technology oriented world of computers has a very elegant
mathematical basis to it. This basis is deeply rooted in mathematics developed before the days
of modern computers. Our study will lead to some interesting implications concerning the
theoretical limits of computing. On the practical side, this course is a background for a course on
compilers. Topics covered in this course include: mathematical prerequisites, finite state
machines (automata), concept of a language and grammars, deterministic and non-deterministic
accepters, regular expressions and languages, context-free languages, normal/canonical forms,
pushdown automata, Turing machines, context sensitive languages, recursive and recursively
enumerable languages. Each of the language classes has two points of view: a class of automata
defining the language, and a class of grammars defining the language. This dual approach to
defining languages, will finally lead to the Chomsky hierarchy of languages. We shall observe
that the Turing Machine not only serves to define a language class, but also a mathematical
model for computation itself and defines the theoretical limits of computation.

8. Prerequisites

Set theory:
o Sets and operations on sets
o Relations and classification of relations
o Equivalence relations and partitions
o Functions operations of functions
o Fundamentals of logic
Graph theory
Algorithms and data structures at the level of an introductory programming sequence.
Mathematical induction and its applications



9. Instructional Learning Outcomes

S.No.

Unit

Contents

Outcomes

Fundamentals : Strings,
Alphabet, Language,
Operations, Finite state
machine, definitions, finite
automaton model,
acceptance of strings,
and languages,
deterministic finite
automaton and non
deterministic finite
automaton, transition
diagrams and Language
recognizers.

At the end of the chapter the student

will be

Able to manipulate strings
on a given alphabet by
applying the operations there
on.

Able to visualize languages
and finite state machines and
their equivalence.

Able to tell languages by the

FSMs.

Able to differentiate
Deterministic and Non-
Deterministic automata.
Able to know the importance
of finite automata in

compiler design.

Finite Automata: NFA with
null transitions - Significance,
acceptance oflanguages.
Conversions andEquivalence:
Equivalence between NFA
with and without null
transitions, NFA to DFA
conversion, minimization of
FSM, equivalence between
two FSM’s, Finite Automata
with output- Moore and
Mealy machines.

At the end of the chapter the sudent

will be

Able to design NFA with
null transitions for a given
language.

Able to convert and prove
equivalence between NFA
and NFA without null
transitions.

Able to minimize FSMs.

Able to design finite
automata with outputs and

prove their equivalence.
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Regular Languages:
Regular sets, regular

expressions, identity
rules, Constructing
finite Automata for a
given regular expressions,
Conversion of Finite
Automata to Regular
expressions. Pumping
lemma of regular sets,
closure properties of

regular sets

At the end of the chapter student

will be

Able to know the
importance of regular sets
& expressions

Able to construct FAs

for REs and vice vfor
show that a language is

not regular.

Grammar Formalism :
Regular grammars-right
linear and left linear
grammars, equivalence
between regular

linear grammar and FA,
inter conversion, Context
free grammar, derivation
trees, and sentential forms.
Rightmost and leftmost
derivation of strings.

At the end of the chapter the

studentwill be able to

Write regular grammar
for regular language and
be ableto differentiate
between left linear &
right linear grammars.
Prove the

equivalence

between regular

linear grammar and FA
Define CFG.

Derive (L&R) of strings
forgiven CFG.
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Context Free Grammars:
Ambiguity in context free
grammars. Minimization of
Context Free Grammars.
Chomsky normal form,
Greibach normal form,

Pumping Lemma for

At the end of the chapter the

studentwill be able to

Know the cause of
ambiguity in CFG
&minimize CFG.
Write CFG in the
normalforms.

Use pumping lemma to




Context Free Languages.
Enumeration of properties
of CFL

prove that a language is not a
CFL.

Push Down Automata: Push|At the end of the chapter the
down automata, definition, student will be able to
model, acceptance of CFL, e Define and design a PDA

Acceptance by final state
and acceptance by empty
state and its equivalence.
Equivalence of CFL and
PDA, interconversion.
Introduction to DCFL and
DPDA.

for a given CFL.
Prove the equivalence
of CFL and PDA and
their inter-
conversions.
Differentiate DCFL
and DPDA

v

Turing Machine : Turing
Machine, definition, model,
design of TM, Computable
functions, recursively
enumerable languages.
Church’s hypothesis,
counter machine, types of
Turing machines. , linear
bounded automata and
context sensitive language.

At the end of the chapter the
student will be able to

Define and design TM
for a given
computation, a total
function, or a language.
Convert algorithms
into Turing

Machines.

Arrange the machines
in the hierarchy with
respect to their

capabilities.




Computability = Theory:
Chomsky  hierarchy  of
languages, decidability
of problems, Universal
Turing machine,
undecidability of posts
correspondence problem,
Turing reducibility,
Definition of P and NP
Problems, NP complete and
NP hard problems.

At the end of the chapter the

studentwill be able to

Know the hierarchy of
languages and
grammars.

Know decidability
ofproblems.

Genralize Turing

Machines into

universal TMs
e C(Classify P and NP

(complete & hard)

Problems.
10. Course mapping with PEO’s and PO’s
Mapping of Course to PEOs and POs
Course PEOS POs
FLAT PEO1,PEO2 PO1,PO2,PO3,P0O4,POS5,PO12

Mapping of Course outcomes to Program Outcomes

S.No.

Course Outcome

Pos

1 Students would be able to explain basic concepts in formal | PO1,PO3,PO12

language theory, grammars, automata theory, computability
theory, and complexity theory.

2 The student will be able to demonstrate abstract

PO1,PO2,PO3,PO4,PO
14




models of computing, including deterministic (DFA), non-
deterministic (NFA), Push Down Automata(PDA) and Turing
(TM) machine models and their power to recognize the
languages.

The student will be able to explain the application ofmachine
models and descriptors to compiler theory and

parsing. Students will be able to explain the relationship
among language classes and grammars with the help of
Chomsky Hierarchy

PO2,PO3,POS

Students will be able to relate practical problems to
languages, automata, computability, and complexity.

PO1,PO2,PO3

FLAT COURSE PO1| PO | PO | PO4| PO | PO6| PO7| PO8| PO | PO10| PO1 | PO1 | PSO | PSO
OUTCOMES 2 3 5 9 1 2 1 2
COl 2 1 1

CO2 2 1 2 1 1
CO3 1 1 2

CO4 1 2




11. Class Time Table.

NAWAB SHAH ALAM KHAN COLLEGE OF ENGINEERING AND TECHNOLOGY
Approved by AICTE/ Affiliated to Osmamnia University
PROGRAMMIE: B.TECH -III YEAR

ISEMESTER (REG: R18) TIMETABLE

AY -2020-2021

BRANCH: IT LH: 15 W.EF:21-12-2020
Time 09:30 AM- 10:31 AME- 11:31PM- 12:30 PM- 01:30 PM- 02:31PM- 3:31 PM-
/Date 10:30 AM 11:30 PAM 12:30 PN 01:30 PM 02:30 PM 03:30 PM 4:30PM
MON DCCN SE FLAT ﬁ EIO ADS LIBRARY
TUE ADS DCCN BID ﬁ SE-LAB/CN&WP LAB
WED SE WP o] CN&EWP-LABACS LAB
THU ADS DCCN FLAT E ACS-LAB/SE LAB
FRI BIO FLAT SE E IPR
SAT FEMEDIAL! TT/ VISITING HOUES SPORTS
S.NO SUBJECT/LAEB NAME FACULTY NAME

1 FORMAL AUTOMATA THEORY MS FARHEEN SULTANA

. SOFTWARE ENGINEERING DE G.5.5RAQ

3 DATA COMMUNICATION AND COMPUTER NETWORKS MS PUSHPA ANJALI PATRA

4 WEB PROGEAMMING MS NAZIA AMREEN

5 BIOMETRIC MR NASIR KHAN

] ADVANCE OFERATING SYSTEM M5 SABA MOHAMMADI

- . - - MEMOHD AYAZ UDDIN / DR MOHD ATEEQ

[ SOFTWARE ENGINEERING LAB AHMFD/ MS TAHFRA ABID

B COMPUTER NETWORK & WEB PROGEAMMING LAB M5 PUSHPAANJALI PATRA/ NAZIA AMREEN

9 ADVANCED COMMUNICATION SKILLS LAB M5 SABIHA KHATOON

10 | INTELLECTUAL PROPERTY RIGHTS MS MANGA

CLASS COORDINATOR HOD PRINCIPAL
FARHEEN SULTANA DE G.5.5.RA0 DE SYED ABDUL SATTAR




12. Individual Time Table.

NAWAB SHAH ALAM KHAN COLLEGE OF ENGINEERING AND TECHNOLOGY

Department of Information Technology
INDIVIDUAL TIMETABLE A.Y -2020-2021

FACULTY NAME: MS FARHEEN SULTANA

Time 09:30 AM- 10:31 AM- 11:31 PM- 12:30 PM- 01:30 PM- 02:31 PM- ot 4
/Date 10:30 AM 11:30 PM 12:30 PM 01:30 PM 02:30 PM 03:30pM | 3:31 PM-4:30PM
MON FLAT Y PYTH LAB
TUE PYTH 5 PYTH LAB
WED PYTH ;
O
THU PYTH FLAT %
-
FRI FLAT
S.NO SUBJECT NAME COURSE YEAR-SEM
1 PYTHON PROGRAMMING B.TECH V-1
2 FORMAL AUTOMATA THEORY B.TECH I1-1
3 PYTHON PROGRAMMING LAB B.TECH IV-1
b o soto S
=
FACULTY SIGN HOD PRINCIPAL

FARHEEN SULTANA DR G.S.S.RAO DR.SYED ABDUL SATTAR




13. Lecture Schedule

LESSON PLAN
S.NO| No of Topics to be covered Regular / Remarks
Periods Additional | Teachin
g aids
used
LCD/O
HP/BB
UNIT
1
1 01 Introduction regular BB
2 01 Alphabet, Strings, Language, Operations | regular BB
01 Mealy Machine — Definition and regular
Examples
4 01 Designing a Mealy Machine regular
5 01 Moore Machine — Definition and regular
Examples
6 01 Equivalence of Moore and Mealy regular
machines
7 01 Conversion between Mealy and regular
Moore
machines
01 Finite Automaton Model regular BB
9 01 Accepting strings and languages regular BB
10 01 DFA & NDFA, Transition Diagrams and | regular BB
Language Recognizers
11 01 NFA to DFA Conversion regular BB




12 01 NFA with [ Transitions — significance, | regular BB
acceptance of languages
13 01 Conversions and Equivalence : regular BB
Equivalence
between NFA with and without €
transitions
14 01 Equivalence of two FSM’s regular BB
15 01 Minimization of FSM. regular BB
16 01 Designing DFA for Elementary Languages | regular BB
17 01 Designing DFA for Complex Languages regular BB
18 01 Designing DFA for Complex Languages regular BB
with
not and from left to right constructs
19 01 Designing DFA for more examples regular BB/LCD
20 01 Designing NFA regular BB/LCD
20 No. of classes required
UNIT-II
22 01 Regular sets, regular expressions, regular BB
23 01 Identity Rules regular BB
24 01 Constructing Finite Automata for a given | regular BB
regular expression
25 01 Conversion of Finite Automata to Regular | regular BB
expressions
26 01 Examples for Above regular BB
27 01 Pumping lemma of regular sets regular BB
28 01 Using Pumping lemma to show given regular BB
language as Non-regular
29 01 Closure properties of regular sets regular BB
30 01 Regular grammars-right linear and left regular BB
linear
grammars
31 01 equivalence between regular linear regular BB
grammar
and FA
32 01 Inter conversion from FA to Regular regular BB
Grammar and vice versa
33 01 Context free grammar, Right most and regular BB
leftmost derivation of strings
34 01 derivation trees, sentential forms regular BB
35 13 No. of classes required
UNIT-
11}
36 01 Context Free Grammars: regular BB
Ambiguity incontext free grammars.
37 01 Minimization of Context Free regular BB

Grammars-Elimination of Useless
symbols




38 01 Minimization of Context Free regular BB
Grammars-Elimination of Unit & Null
Productions
39 01 Chomsky normal form regular BB
39 01 Greiback normal form regular BB
40 01 Examples on CNF & GNF regular BB




41 01 Pumping Lemma for Context Free regular BB
Languages.
42 01 Enumeration of properties of CFL regular BB
43 01 Push down automata, definition, model,ID | regular BB
44 01 acceptance of CFL by final state and regular BB
empty state
45 02 Designing PDA regular BB
46 01 Equivalence of CFL and PDA regular BB
47 01 PDA to CFG regular BB
48 01 Introduction to DCFL and DPDA regular BB
49 15 No. of classes required
UNIT-IV
50 01 Turing Machine : Turing Machine, regular BB
definition, model,ID
51 01 Design of TM, regular BB
52 01 Computable functions, regular BB
53 02 Examples on Designing TM regular BB
54 01 Recursively enumerable languages, regular BB
Church’s hypothesis,
55 01 counter machine regular BB
56 01 Types of Turing machines regular BB
57 01 Linear Bounded Automata(LBA) and regular BB
context sensitive language
58 09 No. of classes required
UNIT-V
59 01 Computability Theory : Chomsky regular BB
hierarchy of languages
60 01 Decidability of problems regular BB
61 01 Universal Turing Machine regular BB
62 01 Undecidability of Posts Correspondence regular BB
problem
63 01 Turing reducibility, regular BB
64 01 Definition of P and NP problems regular BB
65 01 NP complete and NP hard problems regular BB
64 07 No. of classes required




14. LectL ECTURE NOTES
UNIT I

Fundamentals

* Symbol — An atomic unit, such as a digit, character, lower-case letter, etc. Sometimes a
word. [Formal language does not deal with the “meaning” of the symbols.]

* Alphabet — A finite set of symbols, usually denoted by X.

¥=1{0,1} ¥={0,a,9,4} Y={a,b,c,d}
» String — A finite length sequence of symbols, presumably from some alphabet.
w=0110 y = 0aa x =aabcaa z=111
Special string: € (also denoted by A)
Concatenation: wz=0110111
Length: |w| =4 le| =0 Ix|=6
Reversal: yR=2aal

* Some special sets of strings:
' All strings of symbols from
> - {e}

* Example:
x={0, 1}
= {g 0,1, 00,01, 10, 11, 000, 001,...}
Y= {0, 1, 00,01, 10, 11, 000, 001,...}

* A language is:
1) A set of strings from some alphabet (finite or infinite). In other words,
2) Any subset L of &

* Some special languages:
{} The empty set/language, containing no string.
{e} A language containing one string, the empty string.

* Examples:
>={0, 1}
L= {x|xisin X and x contains an even number of 0’s}

¥={0,1,2,..,9,.}
L= {x|xisin X" and x forms a finite length real number}
= {0, 1.5, 9.326,...}



= {BEGIN, END, IF,...}

¥ = {Pascal reserved words} U { (,), ., i, ;,...} U {Legal Pascal identifiers}
L = {x|xis in " and x is a syntactically correct Pascal program}

> = {English words}
L= {x|xisin X" and x is a syntactically correct English sentence}

Finite State Machines

* A finite state machine has a set of states and two functions called the next-state function
and the output function

o The set of states correspond to all the possible combinations of the internal
storage

= [fthere are n bits of storage, there are 2" possible states

o The next state function is a combinational logic function that given the inputs and
the current state, determines the next state of the system

* The output function produces a set of outputs from the current state and the inputs

— There are two types of finite state machines

— In a Moore machine, the output only depends on the current state

— While in a Mealy machine, the output depends both the current state and the
current input

— We are only going to deal with the Moore machine.

— These two types are equivalent in capabilities

* A Finite State Machine consists of:

K states: S = {s1,s2, ... ,sk}, s1 is initial

stateN inputs: 1= {il, 12, ... ,in}

M outputs: O = {ol, 02, ... ,0m}

Next-state function T(S, I) mapping each current state and input to next state
Output Function P(S) specifies output

Finite Automata

*  Two types — both describe what are called regular languages
— Deterministic (DFA) — There is a fixed number of states and we can only be in
one state at a time



Nk W=

— Nondeterministic (NFA) —There is a fixed number of states but we can be in
multiple states at one time

While NFA’s are more expressive than DFA’s, we will see that adding nondeterminism
does not let us define any language that cannot be defined by a DFA.

One way to think of this is we might write a program using a NFA, but then when it is
“compiled” we turn the NFA into an equivalent DFA.

Formal Definition of a Finite Automaton

Finite set of states, typically Q.

Alphabet of input symbols, typically >’

One state is the start/initial state, typically q0 // q0 € Q

Zero or more final/accepting states; the set is typically F. / F €Q
A transition function, typically 9.

This function

» Takes a state and input symbol as arguments.

Deterministic Finite Automata (DFA)

A DFA is a five-tuple: M = (Q, Z, 9, q0, F)

Q A finite set of states
z A finite input alphabet
q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

) A transition function, which is a total function from Q x X to Q
0:(QxX)—>Q 0 is defined for any q in Q and s in £, and
0(g,8)=¢q’ is equal to another state q’ in Q.

Intuitively, 8(q,s) is the state entered by M after reading symbol s while in state q.



« ForExample#1:

1
Q={qe-qi} 0
r={0,1} , 1
Start state is qp ) \ U
F={qo} 0
0:
0 1
do q1 Qo
q1 Qo q1

* LetM=(Q, %, o, Ay F) be a DFA and let w be in £*. Then w is accepted by M iff
d(q UW) =p for some state p in F.

* LetM=(Q,Z%0, g F) be a DFA. Then the language accepted by M is the set:
L(M) = {w|wisin X* and S(qo,w) isin F}

* Another equivalent definition:
L(M) = {w | wis in * and w is accepted by M}

* Let L be a language. Then L is a regular language iff there exists a DFA M such that
L=L(M).

* LetM = .0 F d M

' ' =(Q222,82p0F2)beDFAs. Theananszare
equivalent ift L(M l) = L(Mz).

2

* Notes:
— ADFAM=(Q,Z, 6,q0,F) partitions the set ¥* into two sets: L(M)
andX* - L(M).

— IfL=L(M) then L is a subset of L(M) and L(M) is a subset of L.

— Similarly, if L(M1) = L(M2) then L(M1) is a subset of L(M2) and L(M2) is a
subsetof L(M1).

— Some languages are regular, others are not.
For example, if
L1 = {x|xis astring of 0's and 1's containing an even number of 1's}



+ Givea DFA M such that:

L(M)={x|xisastringof 0’sand 1'sand |x| >=2}

0/1
0/1 0/1

L(M)={x | x is a string of (zero ormore) a’s. b’sand ¢’s such

thatx does not contain the substring aa}

b/e a’ble

A\ N
(=

L(M)={x|xisastringofa’s,b’sand ¢’s such thatx contains the
substring aba}

L(M)={x|xisastringofa’sandb’s such thatx contains both
aaand bb}




LetZ={0.1}. Give DFAsfor {}. {e}.L". and L.

For {}: o1 For {c}: 0/1

ForX™: ForX™:

Nondeterministic Finite Automata (NFA)

An NFA is a five-tuple: M = (Q, Z, 3, q0, F)

Q A finite set of states
z A finite input alphabet
q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q
) A transition function, which is a total function from Q x T to 29
0:(QxX)-> 2Q -2 is the power set of Q, the set of all subsets of Q
3(q,s) -The set of all states p such that there is a transition
labeled s from q to p

3(q,s) is a function from Q x S to 22 (but not to Q)

Let M =(Q, Z, 3,q0,F) be an NFA and let w be in £*. Then w is accepted by M iff
d({q0}, w) contains at least one state in F.



« Let M=(Q, %, 6,q0,F) be an NFA. Then the language accepted by M is the
set:L(M) = {w | wis in Z* and d({q0},w) contains at least one state in F}

* Another equivalent definition:
L(M) = {w|wisin X* and w is accepted by M}

+ Example: some 0’s followed by some 1°s

0 1 0/1
Q= {40 91. 9} @ . A @
: dQo " Q *
Start state is qp N
F={q}
0: 0 1

Qo | {qe.ai} | {}

qi {1 a1, q2}

Q@ {2} {q}




Example #2:

a

b

a c c c b accepted
do do q1 qz qz q:

a a c rejected
qo qo qo qi1

«  Accepts those strings that contain at least two ¢’s

» Thefinite control can be described by a transition diagram:

Example #1:
1
0
0
1 0 0 1 1
qo do q1 qo qo qdo

* One state is final/accepting, all others are rejecting.

* Theabove DFA accepts those strings that contain an even number of
0's



NFAs with ¢ Moves

An NFA-¢ is a five-tuple: M = (Q, Z, 9, q0, F)

Q A finite set of states

> A finite input alphabet

qo The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

) A transition function, which is a total function from Q x £ U {&} to 2%

8:(Qx (T U {g})) =29
3(q,s) -The set of all states p such that there is a transition
labeled a from q to p, where a isin £ U {&}
Sometimes referred to as an NFA-¢ other times, simply as an NFA.

Example:
0 0 0/1
e A & )
—_— q_l} - q_]. -
1~ 0
0 1 g

Q[ {qo} {} {q} - A string w = w;w;...wy is processed

% ® ® ® %
AS W =€ W& WIE ... E WyE

- Example: all computations on 00:
0 & 0

Q| {1t | {1} {} Q0 90 91 Q2

NIGEIEEE

U {qeq} | {go- a5} | {q2}

Let M = (Q, X, 5,q0,F) be an NFA-¢ and let w be in X°. Then w is accepted by M iff
8"({q0}, w) contains at least one state in F.

Let M =(Q, Z, 3,q0,F) be an NFA-¢. Then the language accepted by M is the set:
L(M)= {w|wisin X and §"({q0},w) contains at least one state in F}



Another equivalent definition:
L(M) = {w | wis in X" and w is accepted by M}

Equivalence of NFA and NFA-¢

Do NFAs and NFA-¢ machines accept the same class of languages?
— Is there a language L that is accepted by a NFA, but not by any NFA-g?
— Is there a language L that is accepted by an NFA-g, but not by any DFA?

Observation: Every NFA is an NFA-¢.

Therefore, if L is a regular language then there exists an NFA-g& M such that L = L(M).
It follows that NFA-& machines accept all regular languages.

But do NFA-¢ machines accept more?

Lemma 1: Let M be an NFA. Then there exists a NFA-¢ M’ such that L(M) = L(M").

Proof: Every NFA is an NFA-g. Hence, if we let M’ = M, then it follows that L(M’) =
L(M).

Lemma 2: Let M be an NFA-¢. Then there exists a NFA M’ such that L(M) = L(M").
Proof:

Let M =(Q, Z, 3,q0,F) be an NFA-¢.
Define an NFA M’ = (Q, Z, 6°,q0,F’)

as:
F’=F U {q0} if e-closure(q0) contains at least one state from
FF> = F otherwise
8’(q,a) =3'(q, a) -forallginQandain X
Notes:

- §:(QxX)— 2%is a function
— M’ has the same state set, the same alphabet, and the same start state as M
— M’ has no ¢ transitions



Example:

0 0
@ E A
Qo [« q1

1

Step#1:
— Same state set as M

— qgisthe starting state

Step #2:

— ggpbecomes a final state

I|

Step #3:

0

0







Theorem: Let L be a language. Then there exists an NFA M such that L= L(M) iff there
exists an NFA-¢ M’ such that L = L(M”).

Proof:
(if) Suppose there exists an NFA-¢ M’ such that L = L(M’). Then by Lemma 2 there
exists an NFA M such that L = L(M).

(only if) Suppose there exists an NFA M such that L = L(M). Then by Lemma 1 there
exists an NFA-¢ M’ such that L = L(M”).

Corollary: The NFA-¢ machines define the regular languages.

Equivalence of DFAs and NFAs

Do DFAs and NFAs accept the same class of languages?

— Is there a language L that is accepted by a DFA, but not by any NFA?

— Is there a language L that is accepted by an NFA, but not by any DFA?
Observation: Every DFA is an NFA.
Therefore, if L is a regular language then there exists an NFA M such that L = L(M).

It follows that NFAs accept all regular languages. But do NFAs accept all?



+ Consider the following DFA: 2 or more ¢’s

a a'blc
Q= {q0, 91 02} /N > @
r={a.b.c} ¢ c .
Start state is qp @
F={q} b b
o: a b c
o {20} | {qo} | {ai}
qi {a} | {a} | {a2}
Q {2} | {92} | {a}
+ AnEquivalentNFA:
a a'ble

Q={qo.q1: 92}

z={a,b,c} qo - =@ ) :
b

Start state is qp

F={q.} b

5: a b c
qo {ao} | {ao} | {ai}
a {a} | {a} | {2}
Q {@} | {o} | {¢}

* Lemma 1: Let M be an DFA. Then there exists a NFA M’ such that L(M) = L(M").
* Proof: Every DFA is an NFA. Hence, if we let M’ = M, then it follows that L(M’) =

L(M).
The above is just a formal statement of the observation from the above example.

* Lemma 2: Let M be an NFA. Then there exists a DFA M’ such that L(M) = L(M").



LetM =(Q, Z, 5,q0,F).
Define a DFAM’ =(Q’, Z, 8°,q o,F’) as:
Q =29 Each state in M’ corresponds to a
=1{Qo, Q1,...,} subset of states from M
where Qu = [qi0, qil,...qij]
F’ = {Qu | Qu contains at least one state in
Fhq =[q ]
6’(Qu, a) = Qv iff 5(Qu, a) = Qv

Example: empty string or start and end with 0

Q={qo-q1}
z={0,1}
Start stateis qp
F={q}

0: 0 1
Q | {ai} {}

q: | {qe.qi} | {qu}




Construct DFA M as follows:

6({qo}. 0)=1{aq1} == 8 ([q0]. 0)=[q1]
6({qo}. D=1} == 6([qe]. D=1

6({q1}. 0)=1{q0. a1} == 6"([q91]. 0) = [q0. q1]
6({a1}. D=1{a1} == 6 ([q1]. D= [a1]
6({g0. 91}.0)= {qo. @1} == 6([90- 91]- 0)= [g0. 1]
6({qo. q1}. )={a1} == 6°([q0. q1]. 1)=[q1]
o({}.0={} == 6([1. =[]

o({}. D= 1{} == 6([1. =[]

Theorem: Let L be a language. Then there exists an DFA M such that L = L(M) iff
there exists an NFA M’ such that L = L(M”).

Proof:

(if) Suppose there exists an NFA M’ such that L = L(M’). Then by Lemma 2 there exists
an DFA M such that L = L(M).

(only if) Suppose there exists an DFA M such that L = L(M). Then by Lemma 1 there
exists an NFA M’ such that L = L(M’).

Corollary: The NFAs define the regular languages.

Finite Automata with Qutput

Acceptor:
The symbols of the sequence

s(1)s(2) ... s(1) ... s(t)

are presented sequentially to a machine M. M responds with a binary signal to each input.
If the string scanned so far is accepted, then the light goes on, else the light is off.



s(t) ... s() ... s(2) s(1)

<

Input channel 7y Output signal

Initialize

A language acceptor

Tran r
Abstract machines that operate as fransducers are of interest in connection with the
translation of languages. The following transducer produces a sentence

r(1) r(2) ... r(n)

in response to the input sentence

s(1)s(2) ... s(m)

r(n) ... r(i) ... r(2) r(1)

Output channel



Generator
When M is started from its initial state, it emits a sequence of symbols

(1) r(2) ... r(i) ... r(t)

from a set known as its output alphabet.

r(n) ... (1) ... r(2) (1)
M >

X Output channel

Initialize

We will begin our study with the transducer model of abstract machine (or automaton). We
often refer to such a device as a Finite State Machine (FSM) or as an automaton with output.

Finite State Machine (FSM)

FSM

Input string Output string

The FSM model arises naturally from physical settings in which information-denoting
signals are processed. Physical reality dictates that such systems are finite.

Only a finite number of operations may be performed in a finite amount of time. Such
systems are necessarily discrete.

Problems are quite naturally decomposed into sequences of steps — hence our model is
sequential.

We require that our machine not be subject to uncertainty, hence its behavior is



There are two finite state machine models :

1) Mealy model — in which outputs occur during transitions.
2) Moore model — outputs are produced upon arrival at a new state.
Mealy Model of FSM

Mealy model — transition assigned output, Mt =<Q, S, R, {, g,
qI>Where,

Q = finite set of states // the machine’s memory

S =input alphabet  // set of stimuli

R = output alphabet // set of responses

gl = the machine’s initial state

f : state transition function (or next state function)

f:Q*S0Q
g : output function
g:Q*S[R

*  Example#l:
Design a FSM (Mealy model) which takes in binary inputs and produces a ‘1’ as output
whenever the parity of the input string ( so far ) is even.

S=R=1{0,1}

When designing such models, we should ask ourselves “What is the state set of the
machine?”.

The state set Q corresponds to what we need to remember about input strings. We note
that the number of possible input strings corresponds to |S*| which is countably infinite.

We observe, however, that a string may have only one of two possible parities.
even parity —if n1(w) is even.
odd parity — if n1(w) is odd.

And this is all that our machine must remember about a string scanned so far.

Hence |Q| =2 where Q = {E, ¢} with q] = E indicating the string has even parity and if Mt
is in state o, then the string has odd parity.



e According to this machine’s specifications, it is supposed to produce an output of ‘1’
whenever the parity of the input string so far is even. Hence, all arcs leading into state E
should be labeled with a ‘1’ output.

Parity Checker (Mealy machine)

0/1 0/0
O 1/0
—>
‘\_/
1/1

Observe our notation that g(o, 1) =1 is indicated by the arc from state ¢ to state E with a
‘1’ after a slash.

The output of our machine is 0 when the current string ( so far ) has odd parity.

state table present state input =0 input = 1
next state, output next state, output
for this E E, 1 c,0

parity machine

Observe for the input 10100011 our machine produces the output sequence 00111101

1/0 0/0 1/1 0/1 0/1 0/1 1/0 1/1

E—> —* G—» E—*>E——>E——>E—> _—E

the corresponding admissible state sequence



o Example#2:
Construct a Mealy model of an FSM that behaves as a two-unit delay. i.e.
r(t)={s(t-2),t>2
{ 0 , otherwise
A sample input/output session is given below :

time 123456789
stimulus 000110100
response 000001101

Observe that r(1)=r(2)=0
r(6) = 1 which equals s(4) and so on

We know that S =R = {0, 1}.

Moore model of FSM

Moore model of FSM — the output function assigns an output symbol to each state.

Ms =<Q, S, R, f, h, qI>

Q = finite set of internal states

S = finite input alphabet

R = finite output alphabet

f : state transition function
f:Q*S0Q

h : output function
h:Q—R

ql = € Q is the initial state

*  Example#l:

Design a Moore machine that will analyze input sequences in the binary alphabet S = {0, 1}.
Let w=s(1)s(2) ... s(t) be an input string

NO(W) = number of 0’s in
wN1(wW) = number of 1’s in
w



So naturally, the output alphabet R = {0, 1, 2, 3}
A sample stimulus/response is given below :

stimulus 11011100

response 012123032
Observe that the length of the output sequence is one longer than the input sequence.
Why is this so?
Btw : This will always be the case.

* The corresponding Moore machine :

0
1
1

State diagram

0 1

A |D B 0

B |A C 1

C |B D 2

D |C A 3
State table

This machine is referred to as an up-down counter.

For the previous input sequence : 11011100 the state sequence is :



1 1 0 1
A,0) —> B, 1) —/> (2 —*> B —* (€2

1 1 0 0
—> D3 /> A0 /> D3 —T* (2

*  Example#2:
Design a Moore machine that functions as a pattern recognizer for “1011”. Your machine
should output a ‘1° whenever this pattern matches the last four inputs, and there has been
no overlap, otherwise output a ‘0’.

Hence S=R = {0, 1}.

Here is a sample input/output sequence for this machine :

t= 1234567891011 12
S=0101101101 1 0
R=0 000100000010

We observe that r(5) = 1 because s(2) s(3) s(4) s(5)=1011
however 1(8) = 0 because there has been overlap

r(11) =1 since s(8) s(9) s(10) s(11) = 1011

Machine Identification Problem

The following input-output behavior was exhibited by a transition-assigned machine
(Mealy machine) Mt known to contain three states. Find an appropriate state table for

M.Is the table unique?

time 1234567891011 1213 14
input 0000100010 0 O 1 O
output 0 101000010 1 0 0 1

This problem is useful in fault detection and fault location experiments with sequential
circuits ( i.e. digital circuits with memory ).



One designs a computer circuit. Six months (or six years) later, how does one know that
the circuit is working correctly?

The procedure to solve this problem is helpful in fault diagnosis of digital circuits.

Equivalence of Mealy and Moore Models

The Mealy and Moore models of finite state machines are equivalent ( actually similar ).
1.e. Mt = Mg

What does this mean ?
And how would be prove it ?

We will employ the following machines in our proof.

Ms : A mod 3 counter



0/0 0/1

M1 :
o 1/1
1/0

M2 :

0/0 0/1

o 1/1

—
\—/
1/1
M3 : 0/0
0/0

1/1

1/1

Three helpful Mealy machines



UNIT-II

Regular expressions are very intuitive.
* Regular expressions are very useful in a variety of contexts.
* Given a regular expression, an NFA-¢ can be constructed from it automatically.
* Thus, so can an NFA, a DFA, and a corresponding program, all automatically!

Definition:

* Let X be an alphabet. The regular expressions over X are:

- 0 Represents the empty set { }
i Represents the set {¢}
- a Represents the set {a}, for any symbol ain

Let r and s be regular expressions that represent the sets R and S, respectively.

— rts Represents the set R U S (precedence 3)

— 18 Represents the set RS (precedence 2)

- r Represents the set R* (highest precedence)

- (1) Represents the set R (not an op, provides precedence)

» Ifrisaregular expression, then L(r) is used to denote the corresponding language.

*  Examples: Let = {0, 1}

0+ 1)* All strings of 0’s and 1’s

00+ 1)* All strings of 0’s and 1’s, beginning with a 0

0+ 1)*1 All strings of 0’s and 1’s, ending with a 1

(0+1)*0(0 + 1)* All strings of 0’s and 1’s containing at least one 0

(0+1)*0(0 + 1)*0(0 + 1)*  All strings of 0’s and 1’s containing at least two 0’s

(0+1)*01*01* All strings of 0’s and 1’s containing at least two 0’s

(1+01*0)* All strings of 0’s and 1’s containing an even number of 0’s

1*(01*01%*)* All strings of 0’s and 1’s containing an even number of 0’s

(1*01*0)*1* All strings of 0’s and 1°s containing an even number of 0’s
Identities:

I. Ou =uld=0 Multiply by 0

2. seu=ue=u Multiply by 1



3. ut@=u
4. utu=u
8. u* = (u*)*
9. u(vtw) =uvtuw
10. (utv)w = uw+vw
11. (uv)*u=u(vu)*
12. (utv)* = (u*+v)*
= u*(utv)*
= (utvu*)*
= (uHyF)*
= wH(vu*)*

= (u*V)*u*

Eguivalence of Regular Expressions and NFA-¢

Note: Throughout the following, keep in mind that a string is accepted by an NFA-¢ if
there exists a path from the start state to a final state.

Lemma 1: Let r be a regular expression. Then there exists an NFA-¢ M such that L(M) =
L(r). Furthermore, M has exactly one final state with no transitions out of it.

Proof: (by induction on the number of operators, denoted by OP(r), in r).
Basis: OP(r) =0

Then 1 is either O, €, or a, for some symbol a in X



For &:

—~©@

Inductive Hypothesis: Suppose there exists a k [1 0 such that for any regular expression
rwhere 0 [ OP(r) [J k, there exists an NFA-¢ such that L(M) = L(r). Furthermore,
suppose that M has exactly one final state.

Inductive Step: Let r be a regular expression with k + 1 operators (OP(r) =k + 1), where
k+1>=1.
Casel)r=r] +r2

Since OP(r) = k +1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive
hypothesis there exist NFA-¢ machines M1 and M2 such that L(M1) = L(r1) and
L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state.

Construct M as:

Case2) r=riIr2

Since OP(r) = k+1, it follows that 0<= OP(r1), OP(r2) <= k. By the inductive
hypothesis there exist NFA-& machines M1 and M2 such that L(M1) = L(r1) and
L(M2) = L(r2). Furthermore, both M1 and M2 have exactly one final state.



Construct M as:

@ % > % @

Case3)r=rI*

Since OP(r) = k+1, it follows that 0<= OP(r1) <= k. By the inductive hypothesis
there exists an NFA-¢ machine M1 such that L(M1) = L(r1). Furthermore, M1 has
exactly one final state.

Construct M as: £

Example:
Problem: Construct FA equivalent to RE, r = 0(0+1)*
Solution: r=rlr2

rl=0

2 =(0+1)*

r2 =r3*

r3=0+1

3=r4+r5

4 =0

5=1

Transition graph:



Definitions Required to Convert a DFA to a Regular Expression
Let M =(Q, %, J, q1, F) be a DFA with state set Q = {q1, g2, ..., qn}, and
define:Rij = { x [ x is in £* and 8(qi,x) = qj}
Ri,j is the set of all strings that define a path in M from qi to ;.

Note that states have been numbered starting at 1!



Example:

R, ={0,001,00101,011, ...}
Ry 4=1{01,00101, _}
R:3={11,100, }

Observations:
1)R%; =Ry;

E)Rk'li_j is a subset chku

HLOD =) R o= Rig

4 Rﬂi-z g{a 5[{2'::&}:?‘_-} i=]
IR [{a J[g__ﬁ}:g__}U{g} i=j

(N

Easily computed from the DFA!

5) Rkij - Rk-li:k ':Rk-lk__k:]'s Rk-lkj 17 Rk-lu

Lemma 2: Let M = (Q, Z, 9, q1, F) be a DFA. Then there exists a regular expression r
such that L(M) = L(r).

Proof: : . . . .
First we will show (by induction on k) that for all i,j, and k, where 1 [ 1,j [J

nAnd 0 [J k [] n, that there exists a regular expression r such that L(r) =
RNj .

Basis: k=0

Roi,j contains single symbols, one for each transition from qi to gj, and possibly € if
i=j.



Case 1) No transitions from qi to qj and 1 !=
irij =0
Case 2) At least one (m [J 1) transition from qi to qj andi!=]

r'i,j=al +a2 +a3 +... tam where 8(qi, ap) = qj,
foralll Up Om

Case 3) No transitions from qi to qj and 1 =
jYij=¢

Case 4) At least one (m [J 1) transition from qi to qj and i =}
foralll Up Um

Inductive Hypothesis:
Suppose that Rk'li,j can be represented by the regular expression rk'li,j for
alll 00 1,j 0 n, and some k(1.

Inductive Step:

Consider R, - Rk' E, . k k P Rk- . By the inductive hypothesis there

exist regular expressions r*!i k , rk lkk ™ lk,_] and r*'j;j generating R'j k , R*",

R™k ,andR*'; , respectively. Thus, if we let
) J
J

rhy=rk-} { k}(}k .. kk

then r*i,j is a regular expression generating R¥jj .i.e., L(r*,j) = R} .

Finally, if F = {qj1, qj2, ..., qjr}, then
1+ e
is a regular expression generating L(M).¢



DFA.

-
=]
¥t
m.:.@r_-m [ T SR e T 1
+
[

All remaining columns are computed from the previous column using the

formula.

rlys =191 (11 )* P13 +1%

=0(=)*1+1
=01+1
k=0 k=1 k=2

rku 2 £
Ikl:__':- 0 0
Ikl:g. 1 1
%3 0 0
Ik__".-___".- Z =+ 00
k) 1 1+01
Ikg.:l @ @
13 3 0+1 0+1
rkg.:g. g g

First table column is
computed from the



r'13 =1l s trts

=0(=+00)* (1 +01)+1

=0*1
k=0 k=1 k=2
rku g = (00)*
¥y 2 0 0 0(00)*
) 3 1 1 0*1
rk_-.‘:l 0 0 0(00)*
rk,::_ = =+ 00 (00)*
%33 1 1+01 0*1
1531 (] ] {0+ 1)00y*0
1533 0+1 0+1 {0+ 1)0m*
rk3:3. g g s+{0+ 1)0*1

* Tocomplete theregular expression, we compute:

rat+r s
k=0 k=1 k=2
rku g g (0=
rc) 5 0 0 0(00)*
rf) 3 1 1 0*1
34 0 0 0(00)*
22 g £+ 00 (00)*
.3 1 1+01 0*1
3 ) 5] @ (0+ 1)(00)*0
1532 0+1 0+1 (0+ 1)00)*

Ikg.:g. Z £ E+(D+ 1)031



Pumping Lemma for Regular Languages

Pumping Lemma relates the size of string accepted with the number of states in a DFA
What is the largest string accepted by a DFA with # states?

Suppose there is no loop?
Now, if there is a loop, what type of strings are accepted via the loop(s)?

Lemma: (the pumping lemma)

Let M be a DFA with |Q| = n states. If there exists a string x in L(M), such that [x| [J n,
then there exists a way to write it as X = uvw, where u,v, and w are all in X* and:

— 10 uv| On
- vDO1
— such that, the strings uv'w are also in L(M), for all i [J 0

Proof:
Letx=aja; ... a, wherem = n, xis in L(M), and 6{qq. ajaz ... a;) = q;,

dp 4z d3... dy
QGo 91 92 93---  Qm mzn  and g0 is qp

Consider the first n svmbols, and first n+1 states on the above path:

a1 a7 d3 ... dp

Qo 951 92 953 Gjn

Since |Q| =n. it follows from the pigeon-hole principle thatj, =], for some 0 =
st = n, l.e., some state appears on this path twice (perhaps manv states appear
more than once, but at least one does).



4] a dc4] dp

s4ame

e Let:
— u=al...as
— v=astl]...at

e Since 0 [J s<t [J nand uv =al...at it follows that:

— 1 0 |v| and therefore 1 [ [uv|
— |uv| [0 n and therefore 1 [] juv| [ n

e In addition, let:
— w=at+l...am

+ It follows that uv'w = al...as(as+1...at)'at+1...am is in L(M), for all i [J 0.
In other words, when processing the accepted string x, the loop was traversed once, but

could have been traversed as many times as desired, and the resulting string would still
be accepted.



Closure Properties of Regular Languages

* Consider various operations on languages:

L ={x|xisin Z* andx is notin L}
Lul, ={x|xisinL;orL;}
L L ={x|xisinLyandL;}

L —L, ={x|xisinL,butnotinL;}

L1, ={vxv§|xisinL1 and visin L;}
L = U Li=L'ULIUL2U...
L~ = JLi=L'UL?U...

1. Closure Under Union

TIf L and M are regular languages, sois L U M.

"1Proof: Let L and M be the languages of regular expressions R and S, respectively.
MThen R+S is a regular expression whose language is L U M.

2. Closure Under Concatenation and Kleene Closure
"1 RS is a regular expression whose language is LM.
M R* is a regular expression whose language is L*.

3. Closure Under Intersection

"'If L and M are regular languages, then so is L N M.
MProof: Let A and B be DFA’s whose languages are L and M, respectively.

4. Closure Under Difference
TIf L and M are regular languages, then so is L — M = strings in L but not M.
MProof: Let A and B be DFA’s whose languages are L and M, respectively.

5. Closure Under Complementation
1The complement of language L (w.r.t. an alphabet X such that £* contains L) is £* — L.
MSince £* is surely regular, the complement of a regular language is always regular.

6. Closure Under Homomorphism
LIf L is a regular language, and h is a homomorphism on its alphabet,
then h(L) = {h(w) | wis in L} is also a regular language.



Grammar

Definition: A grammar G is defined as a 4-tuple, G=(V, T, S, P)
Where,
e Vs a finite set of objects called variables,
e Tis a finite set of objects called terminal symbols,
e S € Vs aspecial symbol called start variable,
e Pis a finite set of productions.
Assume that V and T are non-empty and disjoint.

Example:

Consider the grammar G = ({S}, {a, b}, S, P) with P given by
S [ aSb, S e .

For instance, we have S = aSb = aaSbb = aabb.

It is not hard to conjecture that L(G) = {a"b" |n>0}.

Right, Left-Linear Grammar

Right-linear Grammar: A grammar G = (V, T, S, P) is said to be right-linear if all
productions are of the form:

A [0 xB,

A X,

Where A, B € Vand x € T*.

o Example#l:
S — abS| a is an example of a right-linear grammar.

= Can you figure out what language it generates?
= L={we€ {ab}*|w
Contains alternating a's and b's , begins with an a, and ends with a b}

U {a}

" L((ab)*a)

Left-linear Grammar: A grammar G = (V, T, S, P) is said to be left-linear if all
productions are of the form:
A [0 Bx,
A [0 x,
Where A, B € Vand x € T*.
o Example#2:



S — Aab

A — Aab | aB

B—a

is an example of a left-linear grammar.

= (Can you figure out what language it generates?
= L={wl{ab}*|wis aa followed by at least one set of
alternating ab's}

=  L(aaab(ab)*)

o Example#3:

Consider the grammar

S— A4

A—aB |\

B — Ab

This grammar is NOT regular.

* No "mixing and matching" left- and right-recursive productions.

Regular Grammar

A linear grammar is a grammar in which at most one variable can occur on the right side
of any production without restriction on the position of this variable.

An example of linear grammar is G = ({S, S1, S2}, {a, b}, S, P) with
S [0 Slab,

S1 [0 Slab|S2,

S2 [ a.

A regular grammar is one that is either right-linear or left-liner.

Testing Equivalence of Regular Languages

Let L and M be reg langs (each given in some form).
Totestif L=M

1. Convert both L and M to DFA's.

2. Imagine the DFA that is the union of the two DFA's (never mind there are two
start states)

3. If TF-algo says that the two start states are distinguishable, then L 6=M,
otherwise, L = M.



Example:

] 1

Start }-:a\ | ‘
1) 3

0
Start .-"?ﬁ 0 }I}‘_'q\l
~Q—@
i (W
.. /. J
nv’g
AL

We can “see" that both DFA accept L(e+(0+1)*0). The result of the TF-algo is

B | x

C X

D X

F | x X | x
A B C D

Therefore the two automata are equivalent.

Regular Grammars and NFA's

It's not hard to show that regular grammars generate and nfa's accept the same class of
languages: the regular languages!
It's a long proof, where we must show that
o Any finite automaton has a corresponding left- or right-linear grammar,
o And any regular grammar has a corresponding nfa.
Example:

o We get a feel for this by example.

LetS - a4 A — abS|b




CONTEXT FREE-GRAMMAR

e Definition: Context-Free Grammar (CFG) has 4-tuple: G=(V, T, P, S)

Where, ) ) _
A\ - A finite set of variables or non-terminals

T - A finite set of terminals (V and T do not intersect)
P - A finite set of productions, each of the form A — a,
Where AisinVand aisin (V UT)*

Note: that o may be €.
S - A starting non-terminal (S is in V)

*  Example#l CFG:

G =({S}, {0, 1}, P, S)

P:
(1) S —0S1 or just simply S — 0S1 | ¢
(2) S—>¢

»  Example Derivations:

S =>0S1 (1)
S =>g 2)
=>01 (2)
S =>0S1 (1)
=>(00S11 (1)
=>(000S111 (1)
=>000111 (2)

+  Note that G “generates” the language {0*1* | k>=0}

Derivation (or Parse) Tree

* Definition: Let G=(V, T, P, S) be a CFG. A tree is a derivation (or parse) tree if:
— Every vertex has a label from VU T U {&}
— The label of the root is S
— If a vertex with label A has children with labels X1, X2,..., Xn, from left to

right,then

A —>X1,X2,..., Xn
must be a production in P
If a vertex has label ¢, then that vertex is a leaf and the only child of its’ parent

* More Generally, a derivation tree can be defined with any non-terminal as the root.



*  Example:

S5—=AD ] A
N /\
A-—aA A B a A
A A /\
BE-—>=bB a A A b a A A
B—=b |
a
vield =aAab vield =aaAA
* Notes:

— Root can be any non-terminal
— Leaf nodes can be terminals or non-terminals
— A derivation tree with root S shows the productions used to obtain a sentential
form.
Sentential Form

o Definition: A sentence that contains variables and terminals.

S = alh = aaSbb = aaaSbbh = aaabbb

x. T
N
"

Sentential Forms sentence

Leftmost and Rightmost Derivation



Definition: A derivation is lefimost (rightmost) if at each step in the derivation a production is
applied to the leftmost (rightmost) non-terminal in the sentential form.
*  Observation: Every derivation correspondsto one derivation tree.

5 =AB 5
== 3AAB N\
==aaAB A B
=>aaab /|\ \\
==aaah a’ A A b
-

*  Observation: Every derivation tree corresponds to one or more derivations.

5 ==AB S5 ==AB 5 ==AB
==aAAB == Ab == Ah
==aaAb ==aAAb ==aAAb
=>aaaB ==aAab ==aaAb
==aaah ==aaabh =aaah

e The first derivation above is leftmost, second is rightmost and the third is neither.

UNIV I

Ambiguity in Context Free Grammar

* Definition: Let G be a CFG. Then G is said to be ambiguous if there exists an x in L(G)
with >1 leftmost derivations. Equivalently, G is said to be ambiguous if there exists an x
in L(G) with >1 parse trees, or >1 rightmost derivations.

* Note: Given a CFL L, there may be more than one CFG G with L = L(G). Some
ambiguous and some not.

* Definition: Let L be a CFL. If every CFG G with L = L(G) is ambiguous, then L is
inherently ambiguous.

« Example: Consider the string aaab and the preceding grammar.



S—>AB 5 == AB 5

A->2AA =>3AAB e N

A—>aA ==aaAB A B
A-=a :}ﬂa;é / | \ \\
B—=bB ==aaab a’ A A b
B-—=b T T
a a
S == AB g
=>2AB / N\
==a33AB A B

By SN
EL/ HA
|

a

The string has two left-most derivations, and therefore has two distinct parse trees and is
ambiguous .

Eliminations of Useless Symbols

Definition:
Let G=(V, T, S, P) be a context-free grammar. A variable 4 [J V' is said to be useful if
and only if there is at least one w [1 L(G) such that

sobt xAy 0w
withx,y O (VO DY,

In words, a variable is useful if and only if it occurs in at least on derivation. A variable
that is not useful is called useless. A production is useless if it involves any useless
variable

For a grammar with productions
SUaSh| 114
A [ aAd

A is useless variable and the production S [] 4 plays no role since 4 cannot be eventually
transformed into a terminal string; while 4 can appear in a sentential form derived from
S, this sentential form can never lead to sentence!



Hence, removing S [J 4 (and 4 [1 aA) does not change the language, but does simplify
the grammar.

For a grammar with productions
SUOA
Alad |0
B [1 b4

B is useless so is the production B [] bA4! Observe that, even though a terminal string can
be derived from B, there is no way to get to B from S, i.e. cannot achieve

soH xBy.

Example:
Eliminate useless symbols and productions from G = (V, T, S, P), where
V={S,A4,B,C}, T={a, b} and
P consists of
SaS|A4|C
AOa
B [0 aa
COaCbh

First, note that the variable C cannot lead to any terminal string, we can then remove C
and its associated productions, we get G1 with V1 = {S, 4, B}, T1 = {a} and PI
consisting of

SUaS|4

Al a

B U aa

Next, we identify variables that cannot be reached from the start variable. We can create
a dependency graph for V1. For a context-free grammar, a dependency graph has its
vertices labeled with variables with an edge between any two vertices / and J if there is a
production of the form

1 xJy

( s (4) (8
Consequently, the variable B is shown to be useless and can be removed together with its
associated production.

The resulting grammar G’ = (V°, T", S, P’) is with V> = {S, A}, T" = {a} and P’ consisting
of

SUaS|4

Alla



Eliminations of [1-Production

Definition :
a) Any production of a context-free grammar of the form
A0O[O
is called a [J-production.

b) Any variable 4 for which the derivation
4089 0
is possible is called nullable.

If a grammar contains some [J-productions or nullable variables but does not generate
thelanguage that contains an empty string, the [J-productions can be removed!

Example:

Consider the grammar, G with productions
S [0 aS1b
S1 D aS1h | U

L(G) = {a"b" | n [1 1} which is a []-free language. The []-production can be removed
afteradding new productions obtained by substituting [] for ST on the right hand side.

We get an equivalent G° with productions
S U aS1b | ab
S1 0 aS1b | ab

Theorem:
Let G be any context-free grammar with [1 [1 L(G). There exists an equivalent grammar
G’ without [-productions.

Proof :

Find the set VNV of all nullable variables of G

1. For all productions 4 [J [J, put 4 in VN

2. Repeat the following step until no further variables are added to

VN:For all productions
B 1 A142...4An

where A1, A2, ..., An are in VN, put B in VN.
With the resulting VN, P’ can be constructed by looking at all productions in P of
theform

A O x1x2..xm, m U

lwhereeachx; O VO T.



For each such production of P, we put in P’ the production plus all productions generated
by replacing nullable variables with [J in all possible combinations. However, if all xj are
nullable, the resulting production 4 [J [ is not put in P’.

Example:

For the grammar G with
S [0 ABaC
A BC
BOb| O
C 0D |
0D 0Od
the nullable variables are 4, B, and C.

The equivalent grammar G” without []-productions has P’ containing
S [0 ABaC | BaC | AaC| ABa | aC|Ba| Aa|a

AUOBC|C|B
BOb
cobD
Dd
Eliminations of Unit-Production
Definition:
Any production of a context-free grammar of the form
AUOB

where 4, B [ V'is called a unit-production.

Theorem:

Let G=(V, T, S, P) be any context-free grammar without []-productions. There exists a
context-free grammar G” = (1, T", S, P’) that does not have any unit-productions and that
is equivalent to G.

Proof:

First of all, Any unit-production of the form A4 [J 4 can be removed without any effect.
We then need to consider productions of the form 4 [1 B where 4 and B are different
variables.

Straightforward replacement of B (with x]1 =x2 = [1) runs into a problem when we have
AUOB
Bl1A

We need to find for each A, all variables B such that
405 B

This can be done via a dependency graph with an edge (/, J) whenever the grammar G

has a unit-production 7 [] J; 4 [J U B whenever there is a walk from 4 to B in the graph.



The new grammar G’ is generated by first putting in P’ all non-unit-productions of P.

Then, for all 4 and B with 4 [ b B, we add to P’
A0yl [y2]...lyn

where B [1 y1 |y2 | ... | yn is the set of all rules in P’ with B on the left. Not that the rules
are taken from P’, therefore, none of y; can be a single variable! Consequently, no unit-
productions are created by this step.

Example:

Consider a grammar G with
S Aa|B
Alla|bc|B
B0 A|bb

Its unit-production dependency graph is show below

(§) (A P IB)

WehaveSDDA,SDD B, A 1Y Band
B0 4.

First, for the set of original non-unit-productions, we have
S [ Aa
AUal|bc
B [1bb
We then add the new rules
S[lal|bc|bb
A bb
BUalbc
We finally obtain the equivalent grammar G with P’ consisting of
S Aalalbc|bb
A a|bc|bb
BUbb|a|bc
Notice that B and its associate production become useless.

Minimization of Context Free Grammar

Theorem:

Let L be a context-free language that does not contain [1. There exists a context-free
grammar that generates L and that does not have any useless productions, []-productions
or unit-productions.



Proof:

We need to remove the undesirable productions using the following sequence of steps.
1. Remove [1-productions
2. Remove unit-productions
3. Remove useless productions

homsk rmal Form

Definition:

A context-free grammar is in Chomsky normal form if all productions are of the form
AU BC

or
AlUa

where A, B,C 0O V,and a O T.

Note: that the number of symbols on the right side of productions is strictly limited; not
more than two symbols.

Example:

The following grammar is in Chomsky normal form.
SUAS|a
AUOS4|b

On the other hand, the grammar below is not.
S [1AS|AAS
A S4|aa

Theorem:
Any context-free grammar G = (V, T, S, P) with [J [1 L(G) has an equivalent grammar G’
=, T, S, P’) in Chomsky normal form.

Proof:
First we assume (based on previous Theorem) without loss of generality that G has no
[J-productions and no unit-productions. Then, we show how to construct G’ in two steps.

Step 1:
Construct a grammar G1 = (V1, T, S, P1) from G by considering all productions in

P of the form
A O x1x2...xn



Where each x; is a symbol either in V or in T.



Note that if » = 1, x] must be a terminal because there is no unit-productions in G.
In this case, put the production into P1.

If n [] 2, introduce new variables Bq for each a [1 T. Then, for each production of
the form 4 [] x1x2...xn, we shall remove all terminals from productions whose
right side has length greater than one

This is done by putting into P1 a production

A0 C1C2...Cn
Where
Ci=xjifxj [
And
VCi = Ba if xi
=a
And, for every Ba, we also put into Pl a production
Bag U a
As a consequence of Theorem 6.1, it can be claimed that
L(G1) = L(G)

Step 2 o - y
The length of right side of productions is reduced by means of additional
variables wherever necessary. First of all, all productions with a single terminal
or two variables (n = 2) are put into P’. Then, for any production with n [] 2, new
variables D1, D2, ... are introduced and the following productions are put into P’.

A [ C1D1
D1 [
C2D2
Dn-2 11 Cn-1Cn
G’ is clearly in Chomsky normal form.
o Example:
Convert to Chomsky normal form the following grammar G with productions.
S [ ABa
A U aab
B [1Ac
Solution:
Step 1:
New variables Ba, Bb, B¢ are introduced and a new grammar G71 is obtained.
S [0 ABBa
Al
BaBaBbB
[ ABc¢

Bag U



aBp [
bBe [

Step 2:



Additional variables are introduced to reduce the length of the first two
productions making them into the normal form, we finally obtain G’.
S [1AD1

D1 00 BBqg
A 1 BaD?2
D2 [
BaBbB U]
ABc Bg [
a

BpOb
Be Uc

Greibach normal form

Definition:
A context-free grammar is said to be in Greibach normal form if all productions have the
form

A [ ax

where ¢ [] Tand x [ V-

Note that the restriction here is not on the number of symbols on the right side, but rather
on the positions of the terminals and variables.

Example:

The following grammar is not in Greibach normal form.
S AB
AUOaA|bB|b
BOb

It can, however, be converted to the following equivalent grammar in Greibach normal
form.

S U aAB | bBB | bB

AaA|bB|b

BOb

Theorem:
For every context-free grammar G with [10J L(G), there exists an equivalent grammar
G’in Greibach normal form.

Conversion

Convert from Chomsky to Greibach in two steps:
1. From Chomsky to intermediate grammar
a) Eliminate direct left recursion



b) Use 4 [1 uBv rules transformations to improve references (explained later)



2. From intermediate grammar into Greibach

Eliminate direct left recursionStep1:

* Before
AU Aa|b
o After
AU DbZ|b
ZlaZla

* Remove the rule with direct left recursion, and create a new one with
recursion on the right

Step2:
» Before

Al Aa|Ab|b]|c
o After

AUObZ|cZ|b|c
ZUaZ|bZ|alb

* Remove the rules with direct left recursion, and create new ones with
recursion on the right

Step3:
» Before
AU AB|BA | a
Blb|c
« After
A1 BAZ|aZ|BA |a
Z0BZ|B
BUOb|c

Transform A [] uBv rules

» Before

A O uBb

BUOwl |wl|...]wn
o After

Add A4 O uwlb |uwlb |...| uwnb
Delete A [J uBb

Background Information for the Pumping Lemma for Context-Free Languages

* Definition: Let G=(V, T, P, S) be a CFL. If every production in P is of the form



A — BC
or A—>a

where A, B and C are all in V and a is in T, then G is in Chomsky Normal Form (CNF).

Example:
S— AB|BA|

aSbA —a
B—b

Theorem: Let L be a CFL. Then L — {&} is a CFL.

Theorem: Let L be a CFL not containing {e}. Then there exists a CNF grammar G such
that L = L(G).

Definition: Let T be a tree. Then the height of T, denoted h(T), is defined as follows:
— If T consists of a single vertex then h(T) =0
— If T consists of a root r and subtrees T1, T2, ... Tk, then h(T) = maxi{h(Ti)} + 1

Lemma: Let G be a CFG in CNF. In addition, let w be a string of terminals where
A=>*w and w has a derivation tree T. If T has height h(T)[]1, then |w| [J 20D,

Proof: By induction on h(T) (exercise).

Corollary: Let G be a CFG in CNF, and let w be a string in L(G). If [w| [J 2%, where k []
0, then any derivation tree for w using G has height at least k+1.

Proof: Follows from the lemma.

Pumping Lemma for Context-Free Languages

Lemma:
Let G=(V, T, P, S) be a CFG in CNF, and let n = 21V, If z is a string in L(G) and |z| [
n,then there exist strings u, v, w, x and y in T* such that z=uvwxy and:

- Jvx| 01 (e, [v[+x O1)

— |Jvwx|On

— uviwxlyis in L(G), for all i [J 0

Proof:
Since |z| [ n = 2%, where k = |V, it follows from the corollary that any derivation tree
forz has height at least k+1.

By definition such a tree contains a path of length at least k+1.

Consider the longest such path in the tree:



vield of Tis z

Such a path has:
— Length [J k+1 (i.e., number of edges in the path is [J k+1)
— At least k+2 nodes
— 1 terminal

At least k+1 non-terminals

Since there are only k non-terminals in the grammar, and since k+1 appear on this long
path, it follows that some non-terminal (and perhaps many) appears at least twice on this
path.

Consider the first non-terminal that is repeated, when traversing the path from the leaf to
the root.

Second ocourrence of non-temminal A

A First occurrence

This path, and the non-terminal A will be used to break up the string z.



Generic Description:

5
A
A
u v
Example:
5
E F\
c E rff}&/‘x F
\
I VAR
c /S G G
;‘r}/\ ™\
; 4
/ A g !
|
| SNy
In this caseu =cd and v =f M a -
“_._..l"'
_____ -~
Cut out the subtree rooted at A:
5
u v
Example:
5
E F

S=>% cdAf



* Consider the subtree rooted at A:

N

*  Cut out the subtree rooted at the first occurrence of A:

A

A==%*vAx (2)

+  Consider the smallest subtree rooted at A:
A
W
A=%*w (3)

*  Collectively (1), (2) and (3) give us:

S=%*uAy (1)
==* uvAxy (2)
==* uvwxy (3)
=*z since Z=UVWXY

In addition, (2) also tells us:
S =>*uAy (1)
=>* uvAxy (2)

A==%g



=>* yv2Ax’y (2)

=>* yv2wx’y 3)
*  More generally: o
S =>* uv'wx'y for all i>=1
*  Andalso:
S =>* uAy (1)
=>* uwy 3
* Hence: o .
S =* uv'wx'y for all i>=0

* Consider the statement of the Pumping Lemma:

—  Whatis n?
n = 2X, where k is the number of non-terminals in the grammar.

— Whyis|v| + |x| O 1?

A

A

Since the height of this subtree is [] 2, the first production is A->V1V2. Since no non-
terminal derives the empty string (in CNF), either V1 or V2 must derive a non-
emptyv or x. More specifically, if w is generated by V1, then x contains at least one
symbol,and if w is generated by V2, then v contains at least one symbol.

- Whyis |vwx| U n?
Observations:

» The repeated variable was the first repeated variable on the path from the
bottom, and therefore (by the pigeon-hole principle) the path from the leaf
to the second occurrence of the non-terminal has length at most k+1.

» Since the path was the largest in the entire tree, this path is the longest in
the subtree rooted at the second occurrence of the non-terminal. Therefore
the subtree has height [1k+1. From the lemma, the yield of the subtree has
length [J 2%=n.



CFL Closure Properties

Theorem#1:
The context-free languages are closed under concatenation, union, and Kleene closure.

Proof:

Start with 2 CFL L(HI) and L(H?2) generated by Hl = (N1,T1,Rl,s1) and H2 =
(N2,T2,R2,52).

Assume that the alphabets and rules are disjoint.

Concatenation:

Formed by L(H1)-L(H2) or a string in L(H1) followed by a string in L(H2) which can be
generated by L(H3) generated by H3 = (N3,T3,R3,s3). N3=NI1 U N2, T3=T1 U T2, R3
=Rl U R2 U {s3 -->s1s2} where s3 [Isls2 is a new rule introduced. The new rule
generates a string of L(H1) then a string of L(H2). Then L(H1) -L(H?2) is context-free.

Union:

Formed by L(HI) U L(H2) or a string in L(HI) or a string in L(H2). It is generated by
L(H3) generated by H4 = (N4,T4,R4,s4) where N4= NI U N2, T4=T1 U T2, and R4 =
RI U R2 U {s4-->s1, s4 [1 s2}, the new rules added will create a string of L(HI) or
L(H2). Then L(HI) U L(H?2) is context-free.

Kleene:

Formed by L(HI)* is generated by the grammar L(H5) generated by H5 = (N1,T1,R5,s1)
with RS =RI1 U {slle, sI[slsl}. L(H5) includes e, every string in L(H1), and through i-
1 applications of s/[]s/sl, every string in L(H1)i. Then L(HI)* is generated by H5 and is
context-free.

Theorem#2:
The set of context-free languages is not closed under complementation or intersection.

Proof:

Intersections of two languages LI L2 can be defined in terms of the Complement and
Union operations as follows:

LI TTIL2=T1%-(M* - L1y 0% - L2)

Therefore if CFL are closed under intersection then it is closed under compliment and if
closed under compliment then it is closed under intersection.



The proof is just showing two context-free languages that their intersection is not a
context-free language.

Choose L1 = {anbncm | m,n [1110} is generated by grammar HI = {N1,T1,RI,s1}, where
NI ={s, A, B}
TI=1{a,b,c}
RI = {s[4B,
ATuAb,
Alle,
Bl Bc,
Ble}.

Choose L2 = {ambncn | m,n 1110} is generated by grammar H2 = {N2,T2,R2,s2}, where

NI={s, A, B}

TI={a,b,c}

R2 = {§1 AB,

AldA,

Ale,

BlbBc,

Bre}.

Thus L7 and L2 are both context-free.
The intersection of the two languages is L3 = {anbncn | n [1[10}. This language has

already been proven earlier in this paper to be not context-free. Therefore CFL are not
closed under intersections, which also means that it is not closed under complementation.

Pushdown Automata (PDA)

o Informally:
— A PDA is an NFA-¢ with a stack.
—Transitions are modified to accommodate stack operations.

* Questions:
—What is a stack?
—How does a stack help?

* A DFA can “remember” only a finite amount of information, whereas a PDA can “remember”
an infinite amount of (certain types of) information.

* Example:

{0™1" | 0=<n} Is not regular.



{0"1"| 00n[Jk, for some fixed k} Is regular, for any fixed k.

o For k=3:

L= {g 01,0011, 000111}

*In a DFA, each state remembers a finite amount of information.

*To get {0"1" | 0CIn} with a DFA would require an infinite number of states using the
precedingtechnique.

* An infinite stack solves the problem for {0"1" | 0[In} as follows:
—Read all 0’s and place them on a stack

—Read all 1’s and match with the corresponding 0’s on the stack
* Only need two states to do this in a PDA

* Similarly for {0"1™0™™ | n,m[]0}

Formal Definition of a PDA

* A pushdown automaton (PDA) is a seven-tuple:

M=(Q,%,T, 8, q0, 20, F)

Q A finite set of states

z A finite input alphabet

r A finite stack alphabet

q0 The initial/starting state, q0 is in

Qz0 A starting stack symbol, is in I"

F A set of final/accepting states, which is a subset of Q

0 A transition function, where



0: Qx (Z U {e})x ' [J finite subsets of Q x I'*

* Consider the various parts of d:

Qx (Z U {e})x ' U finite subsets of Q x I'*

—Q on the LHS means that at each step in a computation, a PDA must consider its’ current state.
—I" on the LHS means that at each step in a computation, a PDA must consider the symbol on
top of its’ stack.

—2 U {&} on the LHS means that at each step in a computation, a PDA may or may not consider
the current input symbol, i.e., it may have epsilon transitions.

—“Finite subsets” on the RHS means that at each step in a computation, a PDA will have several
options.
—Q on the RHS means that each option specifies a new state.

—I"* on the RHS means that each option specifies zero or more stack symbols that will replace
the top stack symbol.

» Two types of PDA transitions #1:

3(q, a,2) = {(p1,yD), (p2,¥2)s---, (Pm,ym)}

—Current state is q

—Current input symbol is a

—Symbol currently on top of the stack z

—Move to state pi from q

—Replace z with yi on the stack (leftmost symbol on top)

—Move the input head to the next input symbol




» Two types of PDA transitions #2:

5(q, & z) = {(p1,Y1), (p2,¥2),- ., (Pm,ym)}

—Current state is q

—Current input symbol is not considered

—Symbol currently on top of the stack z

—Move to state pi from q

—Replace z with yi on the stack (leftmost symbol on top)

—No input symbol is read

* Example: (balanced parentheses)

M=({q1}, {“(, )"}, {L, #5, 6, q1, #, 9)

d:
(1 8(ql, (, #) = {(ql, L#)}
(2) 8(ql,), #) =0
(3) 8(ql, (L) = {(ql,

LL)}

(4) 8(ql,), L) ={(ql, &)}
(5) 3(ql, & #) = {(ql, &)}
(6) d(ql, e, L)=0

* Goal: (acceptance)
—Terminate in a non-null state
—Read the entire input string

—Terminate with an empty stack

* Informally, a string is accepted if there exists a computation that uses up all the input and leaves



the stack empty.

* Transition Diagram:

* Example Computation:

Current Input

(0)
0)
)

)

€
€

Stack

L#
LL#
L#

)) (.L|LL

Transition

(1) - Could have applied rule
3) (5), but it would have
(4) done no good

4)

(5)

* Example PDA #1: For the language {x | x = wcw'and w in {0,1}*}
M=(iql, g2}, 10, I, ¢}, {R, B, G}, 8, q1, R, O)

(1)
2)
)

“4)
)
(6)
(7
®)

e Notes:

6(ql, 0, R) = {(q1, BR)}
6(q1, 0, B) = {(q1, BB)}
3(q1, 0, G) = {(q1, BG)}

5(ql, ¢, R) = {(q2, R)}
5(ql, ¢, B) = {(q2, B)}
d(ql, ¢, G) = {(q2, G)}
5(q2, 0, B) = {(q2, &)}
6(q2, &, R) = {(q2, &)}

—Only rule #8 is non-deterministic.
—Rule #8 is used to pop the final stack symbol off at the end of a computation.

)
(10)
(11)

(12)

d(ql, 1, R) = {(q1, GR)}
d(ql, 1, B) = {(q1, GB)}

3(ql, 1, G) = {(ql,
GG)}

(92, 1, G) = {(q2, &)}



* Example Computation:

(1) 3(ql,0,R) = {(ql, BR)} (9 d(ql, I, R) = {(ql, GR);
(2)  8(q1,0,B) = {(q1, BB)} (10)  &(ql, 1, B) = {(q1, GB)}
() 3(ql,0,G)={(ql, BG)} (1) 8(ql, 1, G) = {(ql,
GG)}(4) 5(ql, ¢, R) = {(q2, R)}

(5)  d(ql, ¢, B)={(q2, B);

6)  d(ql, ¢, G) = {(q2, G)}

(7 8(q2,0,B) = {(q2, &)} (12)  8(q2, 1,6) = {(q2,
e)}(8) (42, &, R) = {(q2, &)}

State Input Stack Rule Applied Rules Applicable
ql 01cl0 R - (1)

ql 1c10 BR (1) (10)

ql clo GBR (10) (6)

q2 10 GBR (6) (12)

q2 0 BR (12) (7)

q2 (3 R (7) (®)

q2 € € (8) -

* Example Computation:

(1)  8(ql,0,R)={(ql, BR)} (9)  &(ql, I, R)={(ql, GR)}
(2)  8(q1,0,B)=1{(ql, BB)} (10)  8(q1, 1, B) = {(ql, GB)}
(3)  8(ql,0,G) = {(q1, BG)} (11)  8(ql1, 1,G) = {(q1,
GG)}(4) 8(ql, ¢, R) = {(q2, R)}

(5)  d(ql, ¢, B)={(q2, B);

6)  8(ql, ¢, 6) = {(q2, G)}

(7)  9(q2,0,B) = {(q2, &)} (12)  3(q2, 1, G) = {(q2,
£)}(8) (42, &, R) = {(q2, &)}

State Input Stack Rule Applied
ql 1cl R

ql cl GR 9)

q2 1 GR (6)

q2 € R (12)

q2 € € (8)

* Definition: | —* is the reflexive and transitive closure of |—.
—I |—* I for each instantaneous description I
—IfI|—JandJ |—* K then I |—* K



* Intuitively, if [ and J are instantaneous descriptions, then I [—* J means that J follows from I by
Zero or more transitions.

« Definition: Let M = (Q, X, T, 3, q0, z0, F) be a PDA. The language accepted by empty
stack,denoted LE(M), is the set

{w [(q0, w, 20) |—* (p, &, €) for some p in Q}

« Definition: Let M = (Q, X, T, 9, q0, z0, F) be a PDA. The language accepted by final
state,denoted LF(M), is the set

{w(q0, w, z0) |—* (p, €, y) for some p in F and y in ['*}

« Definition: Let M = (Q, Z, I, 9, q0, z0, F) be a PDA. The language accepted by empty stack
andfinal state, denoted L(M), is the set

{w | (q0, w, z0) |—* (p, &, €) for some p in F}
«Lemma 1: Let L = LE(M1) for some PDA M1. Then there exits a PDA M2 such that L = LF(M2).
eLemma 2: Let L = LF(M]1) for some PDA M]1. Then there exits a PDA M2 such that L = LE(M2).

« Theorem: Let L be a language. Then there exits a PDA M1 such that L = LF(M1) if and only
ifthere exists a PDA M2 such that L = LE(M2).

* Corollary: The PDAs that accept by empty stack and the PDAs that accept by final state define
the same class of languages.

*Note: Similar lemmas and theorems could be stated for PDAs that accept by both final state and
empty stack.

Greibach Normal Form (GNF)

* Definition: Let G = (V, T, P, S) be a CFL. If every production in P is of the form
A — aa

Where Aisin V,aisin T, and a is in V*, then G is said to be in Greibach Normal Form
(GNF).

* Example:
S — aAB|
bBA — aA |
a



B—DbB|c
*Theorem: Let L be a CFL. Then L — {¢} is a CFL.

*Theorem: Let L be a CFL not containing {&}. Then there exists a GNF grammar G such that L
=L(G).

eLemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).

* Proof: Assume without loss of generality that € is not in L. The construction can be modified to
include ¢ later.

Let G=(V, T, P, S) be a CFG, and assume without loss of generality that G is in GNF.
Construct M = (Q, Z, T, 9, q, z, @) where:

Q={q}
>=T
r=v
z=S

O:forallainX and A inT’, d(q, a, A) contains (q, y) if A — ay is in P or rather:
0(q,a,A)={(q,y)|A—ayisinPandyisinI'*}, forallainZand Ain I’

*For a given string X in £* , M will attempt to simulate a leftmost derivation of x with G.

* Example #1: Consider the following CFG in GNF.

S O aS G is in GNF
SOa L(G)=a+
Construct M as:

Q={q}

X=T={a}

r=v={S}

z=S

(g, a, S) = {(q, S), (g, &)}
0(q, &, S)=0

*Example #2: Consider the following CFG in GNF.

(1) S—>aA
(2) S—aB
3) A —>aA G is in GNF

(4) A—>aB L(G) = atb+



(5) B —>bB
(6) B—b

Construct M as:
={q}
>=T={a, b}
I'=v={S, A B}
z=3S

(1)o(q, a, S) = {(q, A), (g, B)} From productions #1 and 2, S->aA, S->aB

(2)8(q, a, A) = {(q, A), (g, B)} From productions #3 and 4, A->aA, A->aB

©) 8(q,a,B)=0

“4) 8(q,b,S)=0

®) 8(q, b, A)=0

(6)0(q, b, B)={(q, B), (q, €)} From productions #5 and 6, B->bB, B->b

) 6(q, & S)=0

®) 8(q, &, A) =0

) d(q,&,B)=0 Recall 6: Q x (X U {&}) x ' — finite
subsets of Q x I'*

*For a string w in L(G) the PDA M will simulate a leftmost derivation of w.
—If w is in L(G) then (q, w, z0) |—* (q, &, €)

—If (q, w, z0) |—™* (q, &, €) then w is in L(G)

*Consider generating a string using G. Since G is in GNF, each sentential form in a leftmost
derivation has form:

==ty LA A,

7N

terminals non-terminals

* And each step in the derivation (i.e., each application of a production) adds a terminal and some
non-terminals.
Al = ti+lo
=>t1t2...ti ti+1 0AlA2...Am

*Each transition of the PDA simulates one derivation step. Thus, the i step of the PDAs’
computation corresponds to the i step in a corresponding leftmost derivation.

«After the i step of the computation of the PDA, t1t2...ti+] are the symbols that have already



been read by the PDA and aA1A2...Amare the stack contents.

*For each leftmost derivation of a string generated by the grammar, there is an equivalent
accepting computation of that string by the PDA.

*Each sentential form in the leftmost derivation corresponds to an instantaneous description in
the PDA’s corresponding computation.

* For example, the PDA instantaneous description corresponding to the sentential form:

=>1t1t2...ti A1A2...Am

would be: (q, ti+1ti+2...tn , A1A2...Am)

* Example: Using the grammar from example #2:

S=>aA (1)
=>aaA 3)
=>aaaA 3)
=> aaaaB 4)
=> aaaabB ®)]
=> aaaabb (6)

* The corresponding computation of the PDA:

*(q, aaaabb, S) |— (q, aaabb, A) (1)1
[— (q, aabb, A) (2)/1
[— (q, abb, A) (2)/1
[—(q, b, B) (6)/1
‘_ (q’ &, 8) (6)/2

—String is read

—Stack 1s emptied

—Therefore the string is accepted by the PDA
*Example #3: Consider the following CFG in GNF.

(1) S —>aABC

(2) A—>a G is in GNF
3) B—>b

(4) C—>cAB

(5) C—>cC



Construct M as:

Q={q}
X=T={a,b,c}
I'=v={S, A B,C}
z=S
(1) 3(q, a, S) = {(q, ABC)} S->aABC 9 d(q,¢,S)=0
(2) 8(q, a, A) = {(q, &)} A->a (10)  &(q,¢c,A)=0
3) d(q,a,B)=0 (11)  4(q,c,B)=0
4) 4(g,a,C)=0 C->cAB|cC (12) d(q,c, C)={(q,
AB), (q, ©))

(5) 4(q,b,S)=0 (13) 9(q,&,85)=0
(6) 6(q, b, A)=0 (14) 8(q, &, A) = O
(7) 8(q, b, B) = {(q, &)} B->b (15) 3(q, &, B) = 0O
(8) 3(q,b,C)=0 (16) 9(q,&,C)=0

* Notes:

—Recall that the grammar G was required to be in GNF before the construction could be applied.
—As a result, it was assumed at the start that € was not in the context-free language L.

*Suppose ¢ is in L:
1) First, let L’ = L — {&}
Fact: If Lisa CFL, then L’ =L — {&} is a CFL.
By an earlier theorem, there is GNF grammar G such that L’ = L(G).
2) Construct a PDA M such that L” =
LE(M)How do we modify M to accept €?

Add d(q, &, S) = {(q, €)} ? No!

*Counter Example:

Consider L = {g, b, ab, aab, aaab, ...}
Then L’ = {b, ab, aab, aaab, ...}



*The GNF CFG for L’:

(1) S —aS

() S—=>b
*The PDA M Accepting L’:

Q=1q;

X=T={a, b}

=v={S}

z=S

5(q, a, S) = {(q, S)}
5(q, b, S)={(q, &)}
0(q,& S)=0
*1f3(q, &, S) = {(q, €)} 1s added then:

L(M) = {g, a, aa, aaa, ..., b, ab, aab, aaab, ...}

3) Instead, add a new start state q° with transitions:
3(q’, & S)=1{(q", 8), (9, S)}
«Lemma 1: Let L be a CFL. Then there exists a PDA M such that L = LE(M).
«Lemma 2: Let M be a PDA. Then there exists a CFG grammar G such that LE(M) = L(G).

*Theorem: Let L be a language. Then there exists a CFG G such that L = L(G) iff there exists a
PDA M such that L = LE(M).

*Corollary: The PDAs define the CFLs.

Equivalence of CFG to PDAs

e Example: Consider the grammar for arithmetic expressions we introduced earlier.
It 1s reproduced below for convenience. G = ( {E, T, F}, {n, v, +, *, (', )}, P, E), where



E={ I E 0 E + T,
2: E . T,
. T (] TO
3: 0 F,
4: T F,
5: F U n,
6: F U v,
7: F 0 ( E ),

}

Suppose the input to our parser is the expression, n*(v+n*v). Since G is unambiguous
this expression has only one leftmost derivation, p = 2345712463456. We describe the
behavior of the PDA in general, and then step through its moves using this derivation to
guide the computation.

e PDA Simulator:

o Step 1: Initialize the stack with the start symbol (E in this case). The start symbol
will serve as the bottom of stack marker (Z0).

o Step 2: Ignoring the input, check the top symbol of the stack.

= (Case (a) Top of stack is a nonterminal, “X”’: non-deterministically decide
which
X-rule to use as the next step of the derivation. After selecting a rule,
replace X in the stack with the rightpart of that rule. If the stack is non-
empty, repeat step 2. Otherwise, halt (input may or may not be empty.)

= (Case(b) Top of stack is a terminal, “a”: Read the next input. If the input
matches a, then pop the stack and repeat step 2.
Otherwise, halt (without popping “a” from the stack.)

o This parsing algorithm by showing the sequence of configurations the parser
would assume in an accepting computation for the input, n*(v+n*v).
Assume “q0” is the one and only state of this PDA.

o p (leftmost derivation in G) = 2345712463456
(q0, n*(v+n*v), E)
2[0IM (q0, n*(v+n*v), T)
30M (qO, n*(v+n*v), T*F)

400M (g0, n*(v+n*v), F*F)



SUM (g0, n*(v+n*v), n*F) read M (q0, *(v+n*v), *F)

readl M (q0, (v+n*v), F)
70M
(q0, (vitn*v), (E)) read[1M (q0, v+n*v), E))

10M  (q0, v+n*v),E+T) )
20M (q0, v+n*v), T+T))

400M %
(qO: V+n V), F+T) ) readDM

oM (q0, v+n*v), v+T)) (90, +n*v), +T) )

read IM (q0, n*v), T))
30M (qO0, n*v), T*F))

40M (0, n*v), F*F))

read[IM (q0, v), F))

600M (q0, v), v)) readlIM (q0,), ) )

read['M (q0, 1, 1) accept!

Deterministic PDAs and DCFLs
e Definition: A Deterministic Pushdown Automaton (DPDA) is a 7-tuple,

M=(Q, 1, [, [, q0, Z0, A),
where
Q = finite set of states,

(] = input alphabet,
[] = stack alphabet,

q0 [J Q = the initial state,
Z( [1[] =bottom of stack marker (or initial stack symbol), and

0:Q U (U O{L}) U O 0T Q O [* = the transition function (not necessarily
total).Specifically,

[1] ifd(q, a, Z) is defined for some a [J[J and Z [1(J, then d(q, L, Z) =[] and
(Jd(q, a, Z)[1=1.



[2] Conversely, if d(q, L, Z) [ [J, for some Z, then d(q, a, Z) [] [, for all a
O,and [0d(q, L, Z)[00= 1.

e NOTE: DPDAs can accept their input either by final state or by empty stack — just as for
the non-deterministic model. We therefore define Ds¢k and Dste, respectively, as the

corresponding families of Deterministic Context-free Languages accepted by a DPDA by
empty stack and final state.

UNIT IV:

Turing Machines (TM)

e Generalize the class of CFLs:

Non-Fecursively Emumerable Languages

Becursively Emumerable Languages

Becursive Langages

Context-Free Languages

EegularLangnages

Another Part of the Hierarchy:



Mon-FEecursively Enumerable Languagss

Recursively Enumerabls Langnagss

Racursive Langnagas
Context-Sensitive Languages
Contaxt-Free Langnagss - =

Ragular Langnapss - =

Recursively enumerable languages are also known as #ype 0 languages.
Context-sensitive languages are also known as #ype I languages.
Context-free languages are also known as #ype 2 languages.
Regular languages are also known as type 3 languages.
TMs model the computing capability of a general purpose computer, which informally can
be described as:
— Effective procedure
*Finitely describable
*Well defined, discrete, “mechanical” steps
® Always terminates
— Computable function

*® A function computable by an effective procedure

TMs formalize the above notion.



Deterministic Turing Machine (DTM)

Two-way, infinite tape, broken into cells, each containing one symbol.

Two-way, read/write tape head.

Finite control, i.e., a program, containing the position of the read head, current symbol being
scanned, and the current state.

An input string is placed on the tape, padded to the left and right infinitely with blanks,
read/write head is positioned at the left end of input string.

In one move, depending on the current state and the current symbol being scanned, the TM 1)
changes state, 2) prints a symbol over the cell being scanned, and 3) moves its’ tape head one
cell left or right.

Many modifications possible.

Formal Definition of a DTM

A DTM is a seven-tuple:

M = (Qa 29 Fa 83 qu Ba

F)

Q A finite set of states

r A finite tape alphabet

B A distinguished blank symbol, which is in I"

z A finite input alphabet, which is a subset of - {B}
q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q
) A next-move function, which is a mapping from

QxI'>QxTIx {L,R}

Intuitively, 8(q,s) specifies the next state, symbol to be written and the direction of tape
head movement by M after reading symbol s while in
state g.



Example #1: {0"1" |n>= 1}

0 1

q0 (q1, X, R) -
ql (q1, 0, R) (92,Y,L)
q2 (q2,0,L) -

B - -

@ - :

Sample Computation: (on 0011)

qo0011 |—Xgq,011
|—X0q,11
|—Xg,0Y1
—g,X0Y1
|— Xgo0Y1
— XXq,Y1
— XX, 1

(a3, Y,R)
(ql,Y,R)
(92,Y,L)

(g3, Y,R)

(g4, B, R)



Makinga TM for {0"1" [n>=1}

Try n=1 first.

*q0 is on B expecting to see 0, sees it

*ql seesnext0

*ql hitsa 1

*g2 sees a0, continues

*q2 sees X, loops step 1 through 5

» finished, q0 sees Y (replacement of first 1)
*q3 seesY

*q3 sees B, done

*blank line for final state g4

Now try forn=2

*ql hitsY

*q2 seesY

» complete the unfinished entries verifying
“crashes” as it should be

Example #1: {0"1" |[n>=1}

0 1 X Y B
o (@QIL,X,R) - - @3,Y,R) -
ql (q1,0,R) (@2,Y,L) - qL, Y,R) -
q2 (q2,0,L) - (90, X, R) (92, Y,L) -
q3 - - - (a3, Y,R) (g4, B, R)
a4 - : : : :

—  The TM basically matches up 0’s and 1’s
— ql is the “scan right” state

— 2 is the “scan left” state

— g4 is the final state

Example #2: {w |wisin {0,1}* and w ends with a 0}

0

00
10
10110

Not ¢

Q=1{q0, q1, q2}
r={0,1,B}
¥ = {0, 1}



F={q2}

0 1 B
q0  (q0,0,R) (90, I, R) (q1,B,L)
ql (ng 0: R) - -

@ - . .

— qO is the “scan right” state
— ql is the verify O state

Definition: Let M = (Q, Z, T, 9, q0, B, F) be a TM, and let w be a string in £*. Then w is
accepted by M iff

qQow |—* alpo2
Where pis in F and a1 and a2 are in ['*

Definition: Let M = (Q, X, T, 9, q0, B, F) be a TM. The language accepted by M,
denotedL(M), is the set

{w|wisin X* and w is accepted by M}

Notes:
* In contrast to FA and PDAs, if a TM simply passes through a final state then the
string 1s accepted.
*  Given the above definition, no final state of an TM need have any exiting transitions.
Henceforth, this is our assumption.
* Ifxis notin L(M) then M may enter an infinite loop, or halt in a non-final state.
* Some TMs halt on all inputs, while others may not. In either case the language
defined by TM is still well defined.
Definition: Let L be a language. Then L is recursively enumerable if there exists a TM M
such that L = L(M).

— IfLisr.e. then L = L(M) for some TM M, and
If x is in L then M halts in a final (accepting) state.
«If x is not in L then M may halt in a non-final (non-accepting) state, or loop
forever.

Definition: Let L be a language. Then L is recursive if there exists a TM M such that L =
L(M) and M halts on all inputs.

— If L is recursive then L = L(M) for some TM M, and
If x is in L then M halts in a final (accepting) state.
If x is not in L then M halts a non-final (non-accepting) state.



Notes:



— The set of all recursive languages is a subset of the set of all recursively enumerable
languages

— Terminology is easy to confuse: A TM is not recursive or recursively enumerable,
rather a language is recursive or recursively enumerable.

Recall the Hierarchy:

Non-Becursively Emumerable Langages

Becursively Emumerable Lanmiages

Becursive Languages

Context-Sensitive Languages

Context-Free Languages -2

BegularLangnages-2

Observation: Let L be an r.e. language. Then there is an infinite list M0, M1, ... of
TMssuch that L = L(Mj).

Question: Let L be a recursive language, and M(Q, M1, ... a list of all TMs such that L
=L(Mji), and choose any i>=0. Does Mj always halt?

Answer: Maybe, maybe not, but at least one in the list does.

Question: Let L be a recursive enumerable language, and M(, M1, ... a list of all TMs
suchthat L = L(Mi), and choose any i>=0. Does Mj always halt?

Answer: Maybe, maybe not. Depending on L, none might halt or some may halt.

— If Lis also recursive then L is recursively enumerable.



Question: Let L be a recursive enumerable language that is not recursive (L is in r.e. — r),
and M(Q, M1, ... a list of all TMs such that L = L(Mj), and choose any i>=0. Does Mj
alwayshalt?

Answer: No! If it did, then L would not be in r.e. —r, it would be recursive.

Let M be a TM.

Question: Is L(M) r.e.?
Answer: Yes! By definition it is!

Question: Is L(M) recursive?
Answer: Don’t know, we don’t have enough information.

Question: Is L(M) inr.e — 1?
Answer: Don’t know, we don’t have enough information.

Let M be a TM that halts on all inputs:

Question: Is L(M) recursively enumerable?
Answer: Yes! By definition it is!

Question: Is L(M) recursive?
Answer: Yes! By definition it is!

Question: Is L(M) inr.e —r?
Answer: No! It can’t be. Since M always halts, L(M) is recursive.

Let M bea TM.

As noted previously, L(M) is recursively enumerable, but may or may not be
recursive.

Question: Suppose that L(M) is recursive. Does that mean that M always halts?
Answer: Not necessarily. However, some TM M’ must exist such that L(M’) = L(M)
and M’ always halts.

Question: Suppose that L(M) is in r.e. —r. Does M always halt?
Answer: No! If it did then L(M) would be recursive and therefore not in r.e. —r.

Let M be a TM, and suppose that M loops forever on some string x.

Question: Is L(M) recursively enumerable?
Answer: Yes! By definition it is.

Question: Is L(M) recursive?
Answer: Don’t know. Although M doesn’t always halt, some other TM M’ may exist



such that L(M’) = L(M) and M’ always halts.

*  Question: [sL(M) inr.e. —1?
Answer: Don’t know.

Closure Properties for Recursive and Recursively Enumerable Languages

TMs Model General Purpose Computers:
« IfaTM cando it, so can a GP computer
« Ifa GP computer can do it, then so can a TM

If you want to know if a TM can do X, then some equivalent question are:
*  Can a general purpose computer do X?
*  Can a C/C++/Java/etc. program be written to do X?

For example, is a language L recursive?
*  Can a C/C++/Java/etc. program be written that always halts and accepts L?

TM Block Diagrams:
« If L is a recursive language, then a TM M that accepts L and always halts can be
pictorially represented by a “chip” that has one input and two outputs.

———*  Ves
W o M

—® IO

« If L is a recursively enumerable language, then a TM M that accepts L can be
pictorially represented by a “chip” that has one output.

———*  VEs

W M

*  Conceivably, M could be provided with an output for “no,” but this output cannot be
counted on. Consequently, we simply ignore it.

Theorem: The recursive languages are closed with respect to complementation, i.e., if L is
a recursive language, then so is

Proof: Let M be a TM such that L = L(M) and M always halts. Construct TM M’ as



follows:

M°
ves
. ——— > ves
W = M L><—‘
no
Note That:

— M’ accepts iff M does not
— M’ always halts since M always halts

From this it follows that the complement of L is recursive. ¢

Theorem: The recursive languages are closed with respect to union, i.e., if L1 and L2
arerecursive languages, then so is

Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2) and M1 and M2
alwayshalts. Construct TM M’ as follows:

M Ves
YES start >j' -
W > M M, no
no "

Note That:
« LM)=LM1)ULM?2)
*L(M’) is a subset of L(M1) U L(M2)
*L(M1) U L(M2) is a subset of L(M”)
* M’ always halts since M1 and M2 always

haltlt follows from this that L3 =011 U L2 is

recursive.

Theorem: The recursive enumerable languages are closed with respect to union, i.e., if
L1and L2 are recursively enumerable languages, then sois L3 =L1 U L2



Proof: Let M1 and M2 be TMs such that L1 = L(M1) and L2 = L(M2). Construct
M’ asfollows:



WSS Ves Ves

L ]

W >

ves

Note That:
- LM’)=LM1)ULM2)
«L(M’) is a subset of L(M1) U L(M2)
«L(M1) U L(M2) is a subset of L(M”)
— M’ halts and accepts iff M1 or M2 halts and accepts

It follows from this that is recursively enumerable.

The Halting Problem — Background

Definition: A decision problem is a problem having a yes/no answer (that one presumably
wants to solve with a computer). Typically, there is a list of parameters on which the
problem is based.

— Given a list of numbers, is that list sorted?

— Given a number Xx, is X even?

— Given a C program, does that C program contain any syntax errors?
— Given a TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that interesting.
However, from a theoretical perspective they are for the following two reasons:

—  Decision problems are more convenient/easier to work with when proving
complexity results.

— Non-decision counter-parts are typically at least as difficult to solve.

Notes:
—  The following terms and phrases are analogous:

Algorithm - A halting TM program
Decision Problem - A language
(un)Decidable - (non)Recursive



Statement of the Halting Problem

. Practical Form: (P1)
Input: Program P and input L.
Question: Does P terminate on input I?

. Theoretical Form: (P2)
Input: Turing machine M with input alphabet X and string w in X*.
Question: Does M halt on w?
. A Related Problem We Will Consider First: (P3)
Input: Turing machine M with input alphabet X and one final state, and string w in X*.
Question: Is w in L(M)?
. Analogy:
Input: DFA M with input alphabet X and string w in X*.
Question: Is w in L(M)?
Is this problem decidable? Yes!
. Over-All Approach:

*  We will show that a language Ld is not recursively enumerable

*  From this it will follow that  is not recursive
*  Using this we will show that a language Ly is not recursive

*  From this it will follow that the halting problem is undecidable.

The Universal Language

. Define the language Ly as follows:

Lu = {x|xisin {0, 1}* and x = <M,w> where M is a TM encoding and w is in L(M)}

. Let x be in {0, 1}*. Then either:
1. x doesn’t have a TM prefix, in which case x is not in Ly
2. x has a TM prefix, i.e., x = <M,w> and either:
a) wisnotin L(M), in which case x is not in Ly

b) wisin L(M), in which case x is in Ly



Compare P3 and Lu:

(P3):
Input: Turing machine M with input alphabet X and one final state, and string w in X*.

Notes:
» Ly is P3 expressed as a language
*  Asking if Ly is recursive is the same as asking if P3 is decidable.
*  We will show that Ly is not recursive, and from this it will follow that P3 is
un-decidable.
*  From this we can further show that the halting problem is un-decidable.
*  Note that Ly is recursive if M is a DFA.

Church-Turing Thesis

There is an effective procedure for solving a problem if and only if there is a TM that
halts for all inputs and solves the problem.

There are many other computing models, but all are equivalent to or subsumed by TMs.
There is no more powerful machine (Technically cannot be proved).

DFAs and PDAs do not model all effective procedures or computable functions, but only
a subset.

If something can be “computed” it can be computed by a Turing machine.
Note that this is called a Thesis, not a theorem.

It can’t be proved, because the term “can be computed” is too vague.

But it is universally accepted as a true statement.

Given the Church-Turing Thesis:

o What does this say about "computability"?
o Are there things even a Turing machine can't do?
o Ifthere are, then there are things that simply can't be "computed."

= Not with a Turing machine



= Not with your laptop
= Not with a supercomputer

o There ARE things that a Turing machine can't do!!!

The Church-Turing Thesis:

o In other words, there is no problem for which we can describe an algorithm that
can’t be done by a Turing machine.

The Universal Turing machine

If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any
Tm on any tape that it is given?

Yes. This machine is called the Universal Turing machine.

How would we build a Universal Turing machine?

o We place an encoding of any Turing machine on the input tape of the Universal
Tm.

o The tape consists entirely of zeros and ones (and, of course, blanks)

o Any Tm is represented by zeros and ones, using unary notation for elements and
Zeros as separators.

Every Tm instruction consists of four parts, each a represented as a series of 1's and
separated by 0's.

Instructions are separated by 00.

We use unary notation to represent components of an instruction, with
> 0=1,
> 1=11,

> 2 =111,



> 3=1111,

» n=111..111 (n+1 1's).
Weencodegn asn+11's
We encode symbol ap asn +1 1's

We encode move left as 1, and move right as 11
1111011101111101110100101101101101100

q3,a2,q4,a2, L q0, al, ql,al, R

Any Turing machine can be encoded as a unique long string of zeros and ones,
beginning with a 1.

Let Tn be the Turing machine whose encoding is the number #.

Linear Bounded Automata

A Turing machine that has the length of its tape limited to the length of the input string is
called a linear-bounded automaton (LBA).

A linear bounded automaton is a 7-tuple nondeterministic Turing machine M = (Q, S, G,
d, q0.,qaccept, qreject) except that:

1. There are two extra tape symbols < and >, which are not elements of G.

2. The TM begins in the configuration (q0<x>), with its tape head scanning the symbol
<in cell 0. The > symbol is in the cell immediately to the right of the input string x.

3. The TM cannot replace < or > with anything else, nor move the tape head left of < or
right of >.

<< w1 w2 |w3|wd |\ w5 w6 | =




Context-Sensitivity

*  Context-sensitive production any production 1 1 1 satisfying || [J 7.

» Context-sensitive grammar any generative grammar G= [0, (1, [J, 1)
production in [J context-sensitive.

such that every

* No empty productions.

Context-Sensitive Language

» Language L context-sensitive if there exists context-sensitive grammar G such that either
L=L(G)or L=L(G) U {1}.

*  Example:
The language L = {a"b"c" : n [] 1} is a C.S.L. the grammar

1sS [0 abc/ aAbc,
ADb [ bA,
AC [0 Bbce,
bB [J Bb,
aB [] aa/ aaA
The derivation tree of a*b’c? is looking to be as following
S = aAbc
= abAc
= abBbcc
= aBbbcc = aaAbbcc
= aabAbcc

= aabbAcc = aabbBbccc

= aabBbbccc



= aaBbbbcce

= aaabbbccc



CSG=1LBA
* A language is accepted by an LBA iff it is generated by a CSG.
» Just like equivalence between CFG and PDA

* Given an x [J CSG G, you can intuitively see that and LBA can start with S, and
nondeterministically choose all derivations from S and see if they are equal to the input
string x. Because CSL’s are non-contracting, the LBA only needs to generate derivations
of length [ |x|. This is because if it generates a derivation longer than |x|, it will never be
able to shrink to the size of |x|.

UNITV

Chomsky Hierarchy of Languages

e A containment hierarchy (strictly nested sets) of classes of formal grammars

f" f’" — T ™~
)_, ,-f'f "'H-.HH\ 1.\-\-""‘“\-..___\““ \\\
rd -/ \\ ., \\
ra \ \\ ' N
/ / / Context- Context- \ Recursively N\
[ .“ [ Reqular ‘I free ‘-, sensitive \ enumerable \
| I A I A% %
| | [ _ 9 . | (PDA) | (LBA) | (TM) |
| | | | I._D F Iy | | I |l| |
VoL / /
', Y "'-._ N ! ! 4
NN\ / / / /
\\ \\x S "}/ z"'/ .__/' !///
a\\“h - -~ P -
H"“-H-__\_ S :__—__ _.,--“ff -
The Hierarchy
Class Grammars Languages Automaton
Type-0 Unrestricted Recursively enumerable Turing machine

(Turing-recognizable)



none Recursive Decider



(Turing-decidable)

Type-1 Context-sensitive Context-sensitive Linear-bounded
Type-2 Context-free Context-free Pushdown
Type-3 Regular Regular Finite

Type 0 Unrestricted:

Languages defined by Type-0 grammars are accepted by Turing machines .

Rules are of the form: a — f, where a and S are arbitrary strings over a vocabulary V" and

aFte

Type I Context-sensitive:

Languages defined by Type-1 grammars are accepted by linear-bounded automata.
Syntax of some natural languages (Germanic)
Rules are of the form:
0Ap — aBp
S—e¢
where
A SEN
a, f, BE (NUX)*

B #¢

Type 2 Context-free:

Languages defined by Type-2 grammars are accepted by push-down automata.
Natural language is almost entirely definable by type-2 tree structures

Rules are of the form:

A—a



Where



A€EN

a € (N U X)*

Type 3 Regular:

Languages defined by Type-3 grammars are accepted by finite state automata
Most syntax of some informal spoken dialog
Rules are of the form:

A—c¢

A—a

A— oB

where

A BENanda € X

The Universal Turing Machine

» If Tm’s are so damned powerful, can’t we build one that simulates the behavior of any
Tm on any tape that it is given?

Tape 1

/;escr'ipﬁon of M
Universal

Tape 2
Turing  ——— TP

Machine Tape Contents of AM
\‘ Tape 3

State of M

Three tapes

» Yes. This machine is called the Universal Turing machine.
» How would we build a Universal Turing machine?

» We place an encoding of any Turing machine on the input tape of the Universal
Tm.



» The tape consists entirely of zeros and ones (and, of course, blanks)

» Any Tm is represented by zeros and ones, using unary notation for elements and
Zeros as separators.

Every Tm instruction consists of four parts, each a represented as a series of 1's and
separated by 0's.

Instructions are separated by 00.

We use unary notation to represent components of an instruction, with

> 0=1,
> 1=11,
> 2 =111,
> 3=1111,

» n=111..111 (n+1 1's).
Weencode gn asn+11's
We encode symbol ap asn+ 1 1's

We encode move left as 1, and move right as 11

1111011101111101110100101101101101100
q3a 32, q4a azo L qo’ al’ ql’ al’ R

Any Turing machine can be encoded as a unique long string of zeros and ones, beginning
with a 1.

Let Tn be the Turing machine whose encoding is the number n.

Turing Reducibility

A language A is Turing reducible to a language B, written A [JT B, if A is
decidablerelative to B

Below it is shown that ETM is Turing reducible to EQTM

Whenever A is mapping reducible to B, then A is Turing reducible to B



— The function in the mapping reducibility could be replaced by an oracle

« An oracle Turing machine with an oracle for EQTM can decide ETM



TEQ™ = “On input <M>
1. Create TM M1 such that L(M1) =[]
M1 has a transition from start state to reject state for every element of [

1. Call the EQTM oracle on input <M,M2>

2. Ifit accepts, accept; if it rejects, reject”
+  TEX™ decides ETM
« ETM is decidable relative to EQTM

* Applications
« If A UT B and B is decidable, then A is decidable
« If A OT B and A is undecidable, then B is undecidable
« If A UT B and B is Turing-recognizable, then A is Turing-recognizable
« If A T B and A is non-Turing-recognizable, then B is non-Turing-recognizable

The class P

A decision problem D is solvable in polynomial time or in the class P, if there exists an
algorithm 4 such that

* A Takes instances of D as inputs.
* A always outputs the correct answer “Yes” or “No”.

» There exists a polynomial p such that the execution of 4 on inputs of size n always
terminates in p(n) or fewer steps.
EXAMPLE: The Minimum Spanning Tree Problem is in the class P.

The class P is often considered as synonymous with the class of computationally
feasible problems, although in practice this is somewhat unrealistic.

The class NP

A decision problem is nondeterministically polynomial-time solvable or in the class NP if
there exists an algorithm A4 such that

» A takes as inputs potential witnesses for “yes” answers to problem D.
* A correctly distinguishes true witnesses from false witnesses.



» There exists a polynomial p such that for each potential witnesses of each instance of
size n of D, the execution of the algorithm A takes at most p(n) steps.

* Think of a non-deterministic computer as a computer that magically “guesses” a
solution, then has to verify that it is correct

o Ifa solution exists, computer always guesses it

o One way to imagine it: a parallel computer that can freely spawn an infinite
number of processes

= Have one processor work on each possible solution
= All processors attempt to verify that their solution works
= [faprocessor finds it has a working solution

o So: NP = problems verifiable in polynomial time

o Unknown whether P = NP (most suspect not)

NP-Complete Problems

*  We will see that NP-Complete problems are the “hardest” problems in NP:
o If any one NP-Complete problem can be solved in polynomial time.
o Then every NP-Complete problem can be solved in polynomial time.
o And in fact every problem in NP can be solved in polynomial time (which would
show P = NP)
o Thus: solve hamiltonian-cycle in O(n'*’) time, you’ve proved that P = NP. Retire
rich & famous.
* The crux of NP-Completeness is reducibility

o Informally, a problem P can be reduced to another problem Q if any instance of P
can be “easily rephrased” as an instance of Q, the solution to which provides a
solution to the instance of P

= What do you suppose “easily’” means?
= This rephrasing is called transformation
o Intuitively: If P reduces to Q, P is “no harder to solve” than Q
* An example:

o P: Given a set of Booleans, is at least one TRUE?

o Q: Given a set of integers, is their sum positive?



o Transformation: (x1, X2, ..., Xn) = (y1, ¥2, ..., yn) where y; = 1 if x; = TRUE, y;
= 0if x; = FALSE

* Another example:

o Solving linear equations is reducible to solving quadratic equations

=  How can we easily use a quadratic-equation solver to solve linear
equations?

* Given one NP-Complete problem, we can prove many interesting problems NP-Complete

o Graph coloring (= register allocation)
o Hamiltonian cycle

o Hamiltonian path

o Knapsack problem

o Traveling salesman

o Job scheduling with penalties, etc.

NP Hard

e Definition: Optimization problems whose decision versions are NP- complete are
called NP-hard.

e Theorem: If there exists a polynomial-time algorithm for finding the optimum in
any NP-hard problem, then P = NP.
Proof: Let £ be an NP-hard optimization (let us say minimization) problem, and let 4
be a polynomial-time algorithm for solving it. Now an instance J of the corresponding
decision problem D is of the form (7, ¢), where [ is an instance of E, and c is a
number. Then the answer to D for instance J can be obtained by running 4 on / and
checking whether the cost of the optimal solution exceeds c¢. Thus there exists a
polynomial-time algorithm for D, and NP-completeness of the latter implies P= NP.



MP-Hard
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15. Additional Topics

e Two Way Finite Automata

e Proof of Closure properties of Regular Languages
e Two Stack Pushdown Automata

e CYK Algorithm for CFL

e Cooks’s Theorem

16.University Question Papers
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.

Answer any FIVE Questions
All Questions carry equal marks
* kK kK

. Describe the following sets by regular expressions
(a) {101}
(b) {abba}
(c) {01,10}
(d) {a, ab} [15]
(a) Draw the transition diagram for a NFA whith accepts all strings with either
two consecutive 0's or two consecutive 1's,
(b) differentiate NFA and DFA.
(¢) Construct DFA accepting theset of all sirings with atmost one pair of con-
secutive (’s and atmost ene pair of consecutive 1’s. [6+4+5]
. State and explain about closure properties of Context Free Languages. [15]

. Obtain Chomsky Normal form for following Context Free Grammar
S—~5|[Sg ST p e [15]

(8)
(b)

Construct a NFA accepting {ab, ba} and use it to find a deterministic au-
tomaton accepting the same set.
M = ({al, q2, q3}, {0, 1}, 8, ql, {q3}) is a NFA where § is given by
4 (qla U) = {(12: q?)}, d ((]_]-, 1) = {q]-}
4 (q2,0) = {ql,q2}, d(q2,1)=10
0 (a3, 0) = {a2}, 0 (q3. 1) = {al, q2}
construct an equivalent DFA. [T+8]

(a) Design Turing Machine over {0,1}, L = {w | |w| is a multiple of 3}.
(b) Draw the transition diagram for above langnage. [11+4]
(a) Find the language generated by the grammar. S—0A | 1S |0 |1, A—1A | 1S
|1
(b) Construct context-free grammars to generate the set {a'b™c" | one of I, m, n
equals 1 and the remaining two are equal}. [7+8]
. Construct LR(0) items for the grammar given find it’s equivalent DFA.
5 — 85
S—AS|a
A—aA|b [15]
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1. (a)
(b)
(c)

Answer any FIVE Questions
All Questions carry equal marks
* ok k&

Construct DFA and NFA accepting the set of all strings not containing 101 as
a substring,.

Draw the transition diagram of a FA which accepts all strings of 1’s and 0’s
in which both the number of (’s and 1’s are even.

Define NFA with an example. [64-5+4]

2. Discuss about

(a
(b
(c

=9

)
)
)
(d)
(a)
(b)
(a)
(b)
(c)
)

a

or
—

Context Free Grammar
Left most derivation
Right most derivation

Derivation tree. [15]

If G=({S}, {0, 1}»{8—081, 8= ¢}, 9), find L(G).

If G=({S}, {a}, {S—58}¢5) find the language generated by G. [7+8]

What is unrestricted grammar? Give an Example.
Explain the language generated by unrestricted grammar.

Write about the machine corresponding to unrestricted grammar. — [5+5+5]

Construct a DFA with reduced states equivalent to the regular expression
10 + (0 + 11)0* 1.

Prove (a + b)* = a*(ba*)* [7+8]

Construct a Mealy machine which can output EVEN, ODD according as the
total number of 1’s encountered is even or odd. The input symbols are 0 and
1.

Construct Moore machine equivalent to Mealy machine described in (a).[8+7]

Convert the following Push Down Automata to Context Free Grammar
M= ({q0,q1},{a,b}{z0,za},d,q0,20,0)

0 is given by

4 (q0,a,20)=(q0,za z0)

4 (q0,a,za) =(q0,za za)

5 (qD,b,za) =(q1,€)

4 (ql,b,za) =(ql.e)

d (ql, £,20) =(al,e)

1

www._ntuworld.com

128



129



Code No: R09220504 RO9 Set No. 3

IT B.Tech II Semester Examinations, APRIL 2011
FORMAL LANGUAGES AND AUTOMATA THEORY
Computer Science And Engineering
Time: 3 hours Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks
* kK KK

1. Find regular expressions representing the following sets
(a) the set of all stings over {0, 1} having at most one pair of 0’s or atmost of one
pair of 1’s

(b) the set of all strings over {a, b} in which the number ef océurrences of a is
devisible by 3

(¢) the set of all strings over {a, b} in which there.are at least two occurrences of
b between any two occurrences of a.

(d) the set of all strings over {a, b} with three consecutive b’s.
[15]
2. (a) What is generating variable? Give example.

(b) Reduce the following ContextyFree Grammar
S— ala
A— sb / bCE /DaA
C—abb_/ DD
E—aC
D—aDA [4+11]

3. Construct

(a) A context-free but not regular grammar.

(b) A regular grammar to generate {a" | n>=1}. [15]

4. (a) Counstruct a transition system which can accept strings over the alphabet

a, b, .... containing either cat or rat.
(b) Show that there exist no finite automaton accepting all palindromes over
{a,b}. [7+8]
5. Design Push Down Automata for the language L={wcw® | w ¢ (0+1)*}. [15]
6. Consider the grammar given below
S — Aa
A—AB |«
B—aB|b

(a) Find the CLOSURE ( $'— .S)
(b) GOTO({ A — .AB], [B — . aB] }, A) [7+8]
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Answer any FIVE Questions
All Questions carry equal marks

ok ek
1. (a) Define NFA with £ moves.

(b) differentiate Moore and Mealy machines.

(c) Write the steps in minimization of FA. [44-5+6]
2. (a) Write and explain the properties of transition function.

(b) Prove that for any transition function § and for any twolinput strings x and

¥, 0(q, xy) =8(5(q,%),¥)-

(c) Define Finite Automata and Transition diagram. [6+5-+4]
3. Describe, in the English language, the sets represented by the following regular
expressions:
( ) a(a+b)*ab
(b) a*b + b*a 115]
4. (a) What is typelgrammar? Give an Example.
(b) Explain thelanguage generated by typel grammar.
(c) Write about, the machine corresponding to typel grammar. [54+-5+-5
5. Design Turing Machine for L = { a® b" ¢" | n > 1 }. (15]

6. (a) Let G'be the grammar. S— aS | aSbS | . Prove that L(G) = {x | such that
each prefix of x has atleast as many a’s as b’s}

(b) Show that {abe, bea, cab} can be generated by a regular grammar whose
terminal set is {a, b, ¢} [8+7]
7. (a) Show that the grammar is ambiguous
S —a|Sa|bSS|SSbh|Sbs.
(b) Find Context Free Grammar for L = {a' I/ ¢* | j=i or j=k}. [7+8]

8. Which of the following are CFL’s? explain

(a) {a' b | i and i#2j}

(b) {a' b/ | i>1 and j>1}

(© {(a+b)* far b [ n21}}

(d) {a" b" ¢™ | n<m<2n }. 115]
3
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Answer any five questions
All quesnmn. CAITY, Equal marks

La)  Design FA to accept string with *a’ and °b’ such that the numbe
divisible by 3.

b)  Design a FA acr;eptmg a bmmy siring cndmg with last two characters are same
{iol over L—-{@ i} e s N [{&I
2.a) Convert the Moore machine to determine residue mod 3 into Mealy machine.

b}  Write the steps in minimization of FA. [15]

_3a)  Give regular expression for rcprcsentmg lhe set L of s.inngs in which euery l} s
fif. immediately followed by aﬂeast two 1's].

Pald

b)) IsL={z"|n'>1} regular? - AR '[15}'
4.a)  Find CFG for the language L={ a'b'c* | i=j}
by IfG=({S},{0,1},{8—0S1, 8+ £}.8), find L(G). [15]
f5imy  Converi dhi-following Cortext Free Grammerio Chomsk: Normal Form
S—AaB | azB -
A—g
B—bbA |2
b}  Convert the following grammar to Greibach Normal Form [15]
S—ABA|AB[BAIAA|B - el
AREA | a e
B—+bB | b

6.2} Design Push Down Automata for L = {a™b" |n > 1
b)  Convert the following Context Free Grammar to Push Down Automata [15]
% S-—m‘Sbb | aab i e

7.2) Construcl Turmg Mach_mc to compute the ﬁmctmn lag,".
b}  Design a Turing Machine to recognize the language L={a"h"a" | n-‘-[ [15]

8 er're ahcmt the to]lowmg

¢) Modified PCP. WS\ 700 g

P
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1.a)

3.a)
b)

©)

4.a)

b)

6.a)
b)
c)

Answer any five questions
All questions carry equal marks
What is Automata? Discuss why study automata.
Define DFA and Design the DFA for the following languages on X = {a, b}

i) The set of all strings that either begins or ends or both with
substring ‘ab’.
11) The set of all strings that ends with substring ‘abb’. [15]

Design an NFA that accepts the language (aa*(a+b)*).
Consider the following NFA — ¢

€ a b C
—p|® |} |{a} |
qQ [P} [{qy | ) | D
Ol o |0 | b

1) Compute the e-closure of each state.
i1) Give all the strings of length 3 or less acecepted by the automation.
1i1) Convert the automation to DFA. [15]

Prove that every language defined by a Regular expression is also defined by Finite
automata.

State and prove pumping lemma for regular languages. Apply pumping lemma for
following language and prove that it is not regular L={a" / n is prime}.

If L; and 1, are regular languages then prove that family of regular language is
closed under L;-L; [15]

Define CFG. Obtain CFG for the following languages
1) L={ww | Wisin (a,b)* . " is the reversal of W}
11) L=(W | W has a substring}
What is an ambiguous grammar? Show that the following grammar is ambiguous
E—E+E[E-E|[E*E[E/E|(E)|a
where E is the start symbol. Find the unambiguous grammar. [15]

Define PDA and construct a PDA that accepts the following languages
L={W | W 1is in (a+b)* and number of a’s equal to number of b’s} write the
instantaneous description for the string ‘ aababb’.
For the following grammar construct a PDA
S—aABBJaAA
A—aBBja
B—bBB|A
C—a. [15]

State and prove pumping lemma for context free languages.

What are CNF and GNF for context free grammar? Give examples.

Using CFL pumping lemma show that the following language is not context free
L={a'blc¥i<j<k}. [15]
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7.a)

b)

What is Turing Machine and Multi fape Turing Machine? Show that the language
accepted by these machines are same.

Design Turing Machine for the language to accept the set of strings with equal
number of 0’s and 1’s and also give the instantaneous description for the input

‘110100°. [15]
Write short notes on

a) Homomorphism

b) Recursive Languages

c) Post’s correspondence problem. [L5]
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b2

Answer any FIVE Questions
All Questions carry Equal Marks

a) Explain NFA. Construct NFA for accepting the set of all strings with either two consecutive
0’s or two consecutive 1’s.

b) What is a relation? Explain properties of a relation?

¢) What is a language? Explain different operations on languages? (TM+5M+3M)

a) State Myhill-Nerode theorem.
b) Explain equivalence between two DFA’s with an example.
¢) Find an equivalent NFA without €-transitions for NFA with €-transitions (3M+5M+7M)

0

a) Construct finite automaton to accept the regular expression (0+1)*(00+11)(0+1)*.
b) Construct NFA with €-moves for regular expression (0+1)*.
¢) State and explain Arden’s theorem. (TM+5M+3M)

Let G be the grammar S2>0BITA, A=>0I0SITAA, B> 111SI0BB. For the string 00110101, find
i) Leftmost derivation
ii) Rightmost derivation
iii) Derivation tree
iv) Sentential form. (15M)
a) Discuss ambiguity, left recursion and factoring in context free grammars. Explain how to
eliminate each one.
b) Discuss closure and decision properties of context free languages. (8M+7M)

Explain equivalence of CFG and PDA. (15M)

a) Explain the properties of recursive enumerable languages.
b) Explain counter machine in detail. (8M+7M)

Define P and NP problems. Also write notes on NP-complete and NP-hard problems.  (15M)

lofl

136




Code No: R22055 R10 SET -3

IT B.Tech IT Semester, Regular Examinations, April/May — 2012
FORMAL LANGUAGES AND AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 75

[

Answer any FIVE Questions
All Questions carry Equal Marks

a) Explain DFA and NFA with an example.
b) Define set, relation, graph and tree with examples. (8M+7M)

Define NFA mathematically. Explain its significance and function. Convert the given finite
automaton into its DFG. Explain method used. Take suitable example and prove both accept
the same s{ring. (15M)

a) Define regular sets and regular expressions. Explain applications of regular expressions.

b) Explain pumping lemma for regular sets. (SM+7M)
a) Define the following and give examples:

i) Context Free Grammar i1) Derivation tree

111) Sentential form iv) Leftmost and rightmost derivation of strings.
b) Obtain a right linear grammar for the language L={a"b"/n>=2,m>=3}. (SM+7M)

a) Reduce the grammar S— aAa, A—> SBlbcclDaA, C—> abblDD, E ac, D> aDA.
b) What is left recursion? How to eliminate it. (8M+7M)

a) Explain the terms: PDA and CFL.
b) Explain equivalence of acceptance by final state and empty stack. (8M+7M)

a) Explain Church’s hypothesis.

b) Explain counter machine in detail. (8M+7M)

a) Explain different decision problems of DCFL and Turing machine halting problem.

b) Explain universal Turing machine. (8M+7M)
lofl
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]

Answer any FIVE Questions
All Questions carry Equal Marks

a) Explain princigle of mathematical induction.

Prove that 12+2°+3%+....... +n2:n(n+l )(2n+1)/6 by using mathematical induction.

b) Explain DFA. Construct DFA accepting the set of all strings with an even no. of a’s and
even no. of b’s over an alphabet {a.b}. (TM+8M)

a) Prove with the help of algorithm that “Every NFA will have an equivalent DFA™.
b) Show that the following finite automata are equivalent: (8M+7M)

0 4

a) Explain equivalence of NFA and regular expression.
b) Design FA for regular expression 10+(0+11)0*1. (OM+6M)

a) Obtain a regular grammar for the following finite automata

b) What is the language of a grammar? Explain different types of grammars. (6M+9M)

What is GNF. Explain in detail. Convert the following grammar to GNF:
a) A|9A|A3 b) A2 > A3A||b C) A3 > A]Ag'ﬂ. []SM)

a) Explain acceptance of language by PDA.
b) Design a PDA that accepts the language L={w/w has equal no. of a’s and b’s} over an
alphabet {a.,b}. (TM+8M)

a) How a Turing machine accepts a language? Compare Turing machine and push down
automata.
b) Define Turing machine. Explain the significance of movements of R/W head. (8M+7M)

a) Explain universal Turing machine.

b) Write about decidability of PCP.

¢) Define P and NP problems. (6M+5M+4M)
1 of 1
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[

Answer any FIVE Questions
All Questions carry Equal Marks
a) Design DFA for accepting set of all strings having
i) odd no.of a’s and odd no. of b’s
ii) even no. of a’s and even no. of b’s over an alphabet {a,b}.
b) Define set, relation, graph and tree with examples. (EM+7M)

a) Construct a minimum state automaton equivalent to a given automaton M whose (transition
table is
Statefinput | O 1
% (4 9

q1 qz qa
92 qQ 94
q3 qz q4
b) Discuss finite automata with outputs in detail. (OM+6M)

a) Draw NFA with €-moves recognizing regular expression O1*0+0(01+10)*11 over {0, 1}.
b) Construct regular expression for the given DFA

(8M+7M)

a) Explain Chomsky classification of languages.
b) Construct RLG and LLG for the regular expression (0+1)*00(0+1)*. (SBM+7M)

a) Convert the following grammar to GNF:-

) AI2A1A; 1) Ay 2 AsA4lb i) Az = AjAqla
b) Explain the concept of ambiguity in context free grammars. How to eliminate it.  (9M+6M)
a) Convert the following Context Free Grammar to Push down Automata

i) S2aAlbB i) A~>aBla iii) B->b. Verify the string aab is accepted by equivalent PDA.
b) Explain instantaneous description for PDA. (10M+5M)

a) Define Turing machine. Explain the significance of movements of R/W head.
h) Design a Turing machine to recognize the language L= {a"b"/n>=1}. (6M+9M)

a) Write about LR(0) grammars.
b) Explain halting problem of a Turing machine. (SM+7M)

lofl
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1.a)

b)

2.a)

b)

3.a)

b)

4.a)

b)

5.a)

b)

Answer any five questions
All questions carry equal marks

Define the following terms.

1) Alphabets 11) Strings
111) Power of an alphabet 1v) Language.
Define DFA. Design a DFA to accept the binary numbers which are divisible by 3.
[15]
Consider the transition table of DFA given below:
0 1
—A B A
B A C
C D B
D D A
E D F
F G E
G F G
H G D
1) Draw the table of distinguish abilities of this automaton.
11) Construct the minimum state equivalent DFA.
Design an NFA that accepts the language (0+1)*1(0+1)*, [15]

Define a regular expression. Find the regular expression for the Language
L={a®"p™™ | =0, m>0}.

State pumping lemma for regular languages. Prove that the following language
{a"b"| n=1} 1s not regular.

Convert the regular expression (01+1)* to an NFA —&. [15]

Define Context free grammar and write context free grammar for the languages

i) L={a'b'c" | i+j=k.i>0,j>0}

ii) L={a"b"c* | n+2m=k}.

Consider the Grammar E—+EE | *EE|-EE|x|v.

Find the leftmost and rightmost derivation for the string “+*-xyxy’ and write parse
iree.

What is ambiguous grammar? Prove that the following grammar is ambiguous on
the string “aab’ S—aS|aSbS|e. [15]

Define PDA. Discuss about the languages accepted by a PDA. Design a Non
Deterministic PDA for the language L={0"1"n>1}.
Convert the following grammar to a PDA that accepts the same language by empty
stack. S—0S1jA

A—1A0[S|e [15]







6.a)

b)

7.a)

b)

What are useless Symbols? Remove all useless Symbols and all
& — productions from the grammar
S—aAl|aB
A—aaA[Ble
B—Db|bB
D—B
Define CNF. Convert the following CFG to CNF
S—ASB|e
A—aAS|a
B—SbS|A|bb. [15]

With a neat diagram, explain the working of a basic Turing Machine.
Design a Turing Machine to accept L={1"2"3" | n>1}
Explain the differences between PDA and T M. [15]

Write short notes on

a) Multi tape Turing Machine

b) Post’s correspondence problem

c) Chomsky hierarchy. [15]
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l.a)

b)

2.a)

b)
3.a)
b)
¢)
4.a)

b)

5.a)

b)

Answer any five questions
All questions carry equal marks
Define the following
1) Power of an alphabet 1) NFA
Design a DFA to accept the following language over the alphabet {0,1}
1) L={w / w 1s an even number}
i) L={(01)'17 / i>1, j>1}

ii1) The set of strings either start with 01 or end with 01. [15]
Define distinguishable and indistinguishable states. Minimize the following DFA.
0 1
—A B F
B G C
cOla  |c
D C G
E H F
F C G
G G E
H G C
Explain in detail with an example the conversion of NDFA to DFA. [15]

Write the regular expressions for the following languages

1) The set of all strings over £={a,b.c} containing atleast one ‘a’ and atleast one ‘b’
11) The set of strings of 0’s and 1°s whose 10® symbol from the right end 1s 1.
Convert the regular expression (0+1)*1(0+1)* to an NFA —«.

State and prove the pumping lemma for regular languages. [15]

Define CFG. Write CFG for the language L={0"1"n=1} i.e. the set of all strings of
one or more 0’s followed by an equal number of 1’s.

Consider the grammar S—aS/aSbS/e

Is the above grammar ambiguous?

Show 1in particular that the string “aab” has no:

1) Parse tree 11) Leftmost derivation 1i1) Rightmost derivation. [15]

Discuss the languages accepted by a PDA. Design a PDA for the language that
accepts the strings with number of a’s less than number of b’s where w is in (a+b)*
and show the instantaneous description of the PDA on input ‘abbab’.
Convert the following grammar to a PDA that accepts the same language by empty
stack

S—0S1A

A—1AQ|S|e [15]
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6.a)

7.a)

What are useless symbols? Eliminate Null, unit and useless production from the
following grammar

S—AaA|CA|BaB

A—aaBa|CDAJaa|DC

B—DbB|bAB|bblaS

C—Ca|bC|D

D—bDJe
b. What is CNTF and GNT? Obtain the following grammar in CNT

S—aBalabba

A—ablAA

B—aBla [15]

Explain with neat diagram, the working of a Turing Machine model.
Design a Turing machine to accept all set of palindromes over {0.1}*. Also write its
transition diagram all Instantaneous description on the string *10101°. [15]

Write short notes on the following

a) post’s Correspondence problem

b) Recursive languages

¢) Universal Turing Machine. [15]
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Answer any five questions
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l.a)  Define the following terms with an example for each

1) Transition Table 11) Transition Diagram
i11) Power set iv) Language.
b)  Mention the differences between DFA, NFA and NFA —¢. [15]

2.a) Prove the equivalence of NFA and DFA.
b)  Define Moore and Mealy machines with examples. [15]

3.a) Define a regular expression. Find regular expression for the following languages on
{ab}
1) Language of all strings w such that w contains exactly one 1 and even
number of 07s.
1) Set of strings over {0,1,2} containing atleast one 0 and atleast one 1.
b) Prove that if L is regular language over alphabet X then L is also regular language.
c)  Prove that the language L={0"1""" | n>0} is not regular. [15]

4.a)  Construct the CFG for the following languages
) L={a”"b" | n=0,m>0}
i) L={0'1’2 | 1=7 or j=k} and generate leftmost derivation for the string 01122.
b)  Define ambiguous Grammar. Prove that the following grammar is Ambiguous. Find
an unambiguous gramimar.
S—aS|aSbS|e [15]

5.a) Define PDA and Design PDA to accepts the following languages by final state
L={W | W is in (a+b)* and number of a’s equal to number of b’s}.
Draw the graphical representation of PDA. Also show the moves made by the PDA
for the string ‘abbaba’.
b)  Convert the following CFG to PDA
S—aABB|aAA
A—aBB|a
B—bBB/A
C—a [15]

6.a) Consider the grammar
S—ABC|BaB
A—aA|BaC|aaa
B—bbbla|D
C—CAJAC
d—e
1) Eliminate NULL productions
11) Eliminate Unit Productions in the resulting grammar
111) Eliminate Useless Symbols in the resulting grammar.
b)  Whatis CNF? Convert the following grammar into CNF
S—ABa
A—aab
B—Ac [15]
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7.a)

b)

With a neat diagram, explain the working of a basic Turing Machine.
Design a Turing Machine to accept L={WW" | W is in (a+b)*}
Explain the general structure of multi-tape and deterministic Turing

Machines and show that these are equivalent to basic Turing machine.

Write short notes on

a) Post Correspondence problem
b) Chomsky hierarchy

¢) Homomeorphism.

[15]

[15]
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Answer any five questions
All questions carry equal marks

La)  Design NFA to accept strings with a’s and b’s such that the string end with ‘bb’.
b)  Design FA to aceept string with ‘a® and ‘b’ such that the number of b’s are
divisible by 3. [15]
. Jia}  Convert thé following NEA with ¢ to cqijvaiont DFA
b

a 7
—A q A B
B B T C
i T O©if: B | Al @
b)  Construct the minimum state automata for the followin c.
a b
—A B A
3B | A [0
: e D '8
| D [ A |

E D F
E G E
G F G

3.2)  Find the regular expression for the Language L = {a®2" | n20, m=0}.
b)  Construct NFA for the R.E. that contains odd number of 0’s over ¥ = {0}.

¢)  Write a R.E. for the following DFA. [15]
N Bt (5] e |
i —P Q

Q Q

4.a) ]angl:mgg:']'_ﬁ{a“b"mzl:‘}iisg the set of ﬁlis;ftfings of one,et more
i ) equabniimber of b's, “2i i Sl B LR
b) Teht]inear grammar for the following DFA. [15]
i) il Ok
— A 53 c Py .
........ -:@‘ B : C 1 ‘
l C A c \
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7.a)
b)

o

¢

Discuss the languages scgefited by a PDA . Dsi
accepts the*strings with number of a’s Tess the
(a+b)* and show the instantaneous descriptio 110_?;
Convert the given CFG into GNF. \
5—CaA
A — 8

CaBlb 75

i 3 bis where W i3 in
‘ §1 t ‘abbab’.
[15]

Using CFL pumping lemma show that the following language is not context free

L={a'Yc"li<j<k} )

Obtain the following grammar in CNF, [15]
S—aBalabba y s
AsbablAA
E—aBla

Construct TM for the function flx) = (x+3).
Design a Turing Machine to recognize the language L = {a"b"a" | n>1 oo [15)

Is the Iafnééiiige a"b"c" Clorfext Sensitive “2.Fxplain. i i

What do you mean by ‘decidable’ and ‘undecidable’ prohlem? Give example,

Write short notes on Universal Turing Machine. [15]
---00000---
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Answer any FIVE Questions
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ot o ot o o ot ot ot ot ot et ot ot ot ot ot o ot ot o ot

1. a) Define Relation? Explain about different types of Relations?
b) Construct a DFA that accepts an identifier of a *C’ programming language. (SM+7M)

2. Construct Minimum state Automata for the following DFA?
* denotes final state

) 0 1

=2 gl q2 q3
q2 q3 q5
#q3 q4 q3
q4 q3 95
*q3 q2 q5

(15M)

3. a) Show that L;{aE"/rK[]} is regular?
b) Show that L={a" /p is prime} is context free? (BM+7M)

4. a) Define Grammar? Explain about Chomsky classification of Grammars?
b) Explain about Right linear and Left Linear Grammars? (BM+7M)

5. a) Explain about the decision properties of context free languages?
b) Explain about Left Factoring and Left Recursion? (SM+7M)

6. a) Explain about PDA?
b) Convert the grammar S>0AAA 20S/18/0 to a PDA that accepts the same language by
empty Stack? (4M+11M)

7. a) Define Turing Machine? Explain about the Model of Turing Machine?
b) Explain about types of Turing Machine? (8M+7M)

8. a) Explain about the Decidability and Undecidability Problems?
b) Explain about Turing Reducibility? (8M+7M)

1 of 1
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Time: 3 hours Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Define Finite Automaton? Explain about the model of Finite Automaton?

b) Define Set? Explain about the Operations on Set? (EM+7TM)
2. Explain in detail about Melay and Moore Machines? (15M)
3. Construct Finite Automata for the regular Expression 1(01+10)*007? (15M)

4. a) Define Derivation tree? Explain about LMD and RMD?
b) Construct a derivation tree for the string abed from the grammar
S>aAB,A>bC,B>d.C>cd? (8BM+7M)

5. a) List out the Applications of CFL?
b) Construct CNF for the Grammar S>ABC, A>0B.B>CD/0,C->1 (BM+7M)

6. a) Show that for every PDA then there exists a CFG such that L(G)=N(P)?
b) Construct a PDA for L={a"b"c" /n >0} (8M+7M)

7. Construct a Turing Machine that will accept the Language consists of all palindromes of 0's
and 1°s? (15M)

8.  Explain in detail about NP Complete and NP hard problems? (15M)
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Code No: R22055 R10 SET-3

I1 B. Tech II Semester, Regular Examinations, April/May — 2013
FORMAL LANGUAGES AND AUTOMATA THEORY
(Computer Science and Engineering)
Time: 3 hours Max. Marks: 75

Answer any FIVE Questions
All Questions carry Equal Marks

1. a) Define Relation? Explain about different types of Relations?
b) Construct a DFA for the Regular Language consisting of any number of a’s and b’s?
(8M+7M)

2. Explain in detail about the Procedure for converting a given Melay to Moore Machine and vice
versa? (15M)

3. a) Explain about the identity rules of Regular Expressions?
b) Explain about the Closure Properties of Regular sets? (8M+7M)

4. a) Explain about LBA?

b) Explain about Context free and Context Sensitive Grammars? (EM+7M)
5.  Explain in detail about Chomsky and Greibach Normal forms? (15M)
6. Construct a PDA for L= wew® fwe (0+1)*) (15M)

7. a) Design a Turing Machine for L={0"1"0"1™/m,n>=1}?
b) Explain about Recursively Enumerable Languages? (M+7M)

8. a) Explain in detail about Halting Problem of Turing machine?
b) Explain about Universal Turing Machine? (8M+7M)
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Code No: R22055 R10 SET-4

II B. Tech II Semester, Regular Examinations, April/May - 2013
FORMAL LANGUAGES AND AUTOMATA THEORY
(Computer Science and Engineering)
Time: 3 hours Max. Marks: 75

Answer any FIVE Questions
All Questions carry Equal Marks

1. Define the Following:

i) String i1) Alphabet iii) Languages iv) Grammar  v) NP problem (15M)
2. Construct Minimum state Automata for the following DFA? (15M)
* denotes final state
5 0 1

2 ql q2 q6

q2 ql g3

g3 q2 g4

q4 g4 q2

g5 q4 g5

*q6 9 a4
3. Define Regular Expression? Explain about the Properties ot Regular Expressions? (15M)
4. Explain about the Procedure for Converting a Regular Expression in to Automata. (15M)

5. Define Ambiguous Grammar? Check whether the grammar S>aAB,A>bC/cd.C>cd.B=>c/d
is Ambiguous or not? (15M)

6. a) Explain about DPDA?
b) Construct PDA for L={a"b"n>0}? (SM+7M)

7. a) Construct Turing machine for the languages containing the set of all strings of balanced

parenthesis?
b) Explain about the Design of Turing Machines? (8M+7M)
8. Define LR(0) Grammar? Explain in detail about PCP? (15M)

1of 1

151



kW=

*

UNITI

Explain the Finite automation how the language constructs can be recognized?
List out the Finite automata’s?

Define: string, sub string, transitive closure and reflexive transitive closure?
Describe the finite state machine with a block diagram.

Construct DFA to accept the language of all strings of even numbers of a’s &
numbers of b’s divisible by three over (a+b)*.

Explain the procedure to convert NFA to DFA.

What are the Finite automates with output and explain them with the suitable
Examples.

Explain the procedure to minimize the DFA for the given regular expression.
a) Construct a Mealy machine similar to (well equivalent to except for Ms’s
initial output) the following Moore machine.

0 1
A B C 0
B C B 1
C A C 0

b) Construct a Moore machine similar to the following Mealy machine.

-
-

> 0| w| o
— ] A=)
el lielks
O | —

A
B
C

-

10. Give Mealy and Moore machines for the following processes:

a) For input from (0 + 1), if the input ends in 101, output A; if the input ends
in 110, output B; otherwise output C.

b) For input from (0 + 1 + 2)*, print the residue modulo 5 of the input treated
as a ternary (base 3, with digits 0, 1, and 2) number.
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UNITII

Define the Regular Expression.

Write the Identity Rules for RE

Construct the FA for the Regular Expression (a/b)*abb.
Obtain the minimized DFA for the RE (a/b)*abb.
Explain the Pumping Lemma for the regular sets.

What are the properties of regular sets?

S e

7. Define the grammar and what are the types of grammars?

8. Consider the grammar E->E+ E | E * E | id.
Write the right-most derivation and left most derivation for the sentence id*id+id.
9. Explain right linear and left linear grammar, with a example?
10.Construct a regular grammar G generating the regular set represented by a*b
(atb)*.
11.1f a regular grammar G is given by S [ aS/a, find regular expression for L (G).

UNIT 1T

What is an ambiguity?

What does an ambiguity trouble in the CFG?

What are the techniques used to minimize the CFG?
Explain the CNF and GNF with an example.

el S

5. Explain Pumping Lemma for context free grammars?
6.Explain the concept of push down automata?

7. Write the push down automata to accept the language {ww* |we {0, 1}}
8. [Explain the equivalence of CFL and PDA.
9. Construct PDA equivalent to the following grammar: S [1 aAA, A [ aS/bS/a.

Show that the set of all strings over {a, b} consisting of equal numbers of a’s and
b’s accepted by a PDA.

UNIT IV

Solve the problem using the TM, [anbcn | where n is an odd]

Explain the steps required to design the TM.

Explain the Counter machines with suitable example.

Design a Turing Machine to accept the string that equal number of 0’s and 1’s.
Design a Turing Machine to recognize the language {1"2" 3" /n>1}.

Nk W=

6. What is meant by linear bounded automata?
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UNITV

. Explain the Chomsky hierarchy of languages

Explain the Universal TM?

Explain the P and NP problems?

. Explain the Decidability of Problems. Give an example.
. Explain Post Correspondence Problem.

N

18. ASSIGNMENT QUESTIONS

UNIT-I

1. a) Given L1={a,ab,a?} and L2={b%aa} are the languages over A={a,b}.
Determine 1) L1L2 and 11) L2L1.
b) Given A={a, b, ¢} find L" where i)L={b?} ii) L={a, b} and iii) L={a,b,c’}.
¢) Let L= {ab, aa, baa} which of the following strings are in L"
1) abaabaaabaa and ii) aaaaabaaaab.

2. Determine which of the following strings are accepted by the given Finite Automata

1) 0011 11) 0100 and 111) 0101011.

3. a) Define The following terms: i) DFA and ii)NFA.

b) Design a DFA which accepts set of all strings containing odd number of 0’s and odd
number of 1’s.

4. a) Convert the following NFA to DFA

154



ab b

0

b) Convert the following NFA with e- transitions to without e- transitions.

5. a) Construct the minimum state automata for the following : Initial State :A Final State: D

M

=siialiciiclivlielilkdle)
oliclinliviiviiellgiveliy
wlinliciiclivgivciioldicy

b) Design FA to accept strings with ‘a’ and ‘b’ such that the number of b’s are divisible by 3
6. a) Design DFA for the following languages shown below: > ={a,b}

1) L= {w| w does not contain the substring ab}.

i1) L= {w| w contains neither the substring ab not ba}.

iii)) L= {w| w is any string that does not contain exactly two a’s}.

7. Design a Moore and Mealy machine to determine the residue mod 5 for each ternary
string (base 3) treated as ternary integer.

8. Construct the Moore machine for the given Mealy machine
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9. Construct the Mealy machine for the following Moore machine

Present Next State | output
State i/p=0 p=1
q0 ql | g2 1
ql g3 [ g2 0
q2 q2 |ql 1
q3 q0 | q3 1

10. Design an NFA for the following
i) L={ abaa"|n>1}
i) To accept language of all strings with 2 a’s followed by 2 b’s over {a,b}.

iii) To accept strings with a’s and b’s such that the string end with bb.

UNIT-II

1. a)Define Regular Expression.
b) List the Identity Rules of Regular sets.
c¢) Prove the following
1) er1*(011)*(1* (011)*)* = (1+011)*
i) (1=00*1)+(1+00*1)(0+10*1)*(0+10*1) = 0*1(0+10*1)*
ii1) (rs+r)*r=r(sr+r)*

2. a) Explain equivalence of NFA and regular expression.
(OR)
Prove that every language defined by a regular expression is also defined by Finite Automata
b) Construct DFA for (at+b)*abb.

3. Find the regular expression accepted by following DFA
a) b)
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4. a) State and prove pumping lemma for regular languages. Apply pumping lemma for
following
language and prove that it is not regular L={a™b" | gcd(m,n) = 1}.
b) Show that L= {a™ [n>=1} is not regular.

5. a) Obtain a regular expression to accept strings of a’s and b’s such that every block of four
consecutive symbols contains at least two a’s.
b) Give regular expression for representing the set L of strings in which every 0 is immediately
at least two 1°s.
c) Find the regular expression for the language L={a*"b*"|n>0, m>0}.
d) Find the regular expression for L= {w | every odd position of wisa 1}

6. a) Define Regular Grammar. Explain in detail obtaining a right linear and left linear grammar
for the
following FA.

b) Find the right linear grammar and left linear grammar for the regular expression
(0+1)*010(1(0+1))*

7. a) Explain the process of obtaining a DFA from the given Regular Grammar.
b) Construct a DFA to accept the language generated by CFG:

1) SCI01A, A[J10B, BJOA|11. ii). SCJAa, A[ISb|AD| e.
8. a) Define Context Free Grammar.

b) i)What is CFL generated by the grammar S [J abB, A [1aaBb, B [IbbAa, A [e.
i1) State in English about the language corresponding to below given grammar
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SClaB|bA, AlJajaS|bAA, BJb|bS|aBB.
ii1) Describe the language generated by the grammar S[1aAB, A[1bBb, B[JA| €.

¢) 1) Given the grammar G as S[10B|1A, A[10|0S|1AA, B(11|1S|0BB. Find leftmost and
rightmost

derivation and derivation tree for the string 00110101.

i1) Construct the leftmost, rightmost derivation and parse tree for the following grammar
which

accepts the string aaabbabbba S[7aB|bA, A[JaS|bAAla, B[1bS|aBB|b.
9. Write the Context Free Grammar for the following languages
i) L= {a"b"n>1}
ii) L= {a'blcN|i=j}
1i1) Language of strings with unequal number of a’s and b’s.
iv) L= {a'blc¥| i+j=k,i>0, j>0}

v) L= {wwR| w is in (a,b)* and w® is the reversal of w}

10. a) Write and explain all properties of regular sets.
b) State and prove Arden’s theorem.

UNIT-III

1. a) Discuss Ambiguity, left recursion and factoring in context free grammar.

b) Check whether the following grammars are ambiguous or not?
1) SHaAB, A[1bC|cd, Clled, Blcld.
ii) EDE+E|E-E|E*E|E/E|(E)|a.
1i1) S[1aS|aSbS|e.

c¢) Explain the process of eliminating ambiguity.

2. a) Explain minimization or simplification of context free grammars.

b) 1) Eliminate Null productions in the grammar S[JABaC, ALIBC, Bllble, C[1DJe, D[1d.
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i1) Eliminate Unit productions in the grammar S[JAB, Alla, BLIC, B[Jb,C[1D,DIJE,E[]a.
1i1) Find a reduced grammar equivalent to the grammar G whose productions are
SCIAB|CA, BIIBC|AB, Alla, C[JaB|b.

c¢) Simplify the following grammar: S[1AaB|aaB, A[ID, B[lbbAle, DUE, EUJF, F[JaS.

3. a) Explain Chomsky Normal Form.
b) 1) Find a grammar in CNF equivalent to the grammar S[~S|[SNS]|p|q.
i1) Find a grammar in CNF equivalent to G= S[JbA|aB, A[1bAAlaS|a, B[JaBB|bS|b.

4. a) Explain Griebach Normal Form
b) 1) Convert the following grammar into GNF: ELJE+T|T, TOT*F|F, FU(E)|a.
i1) Convert the following grammar into GNF: S[/Bajab, A[JaAB|a, BLJABb|b.

5. a) Explain and prove the pumping lemma for context free languages.

b) Show that the following languages are not CFL
i) L= {a't |j=i%} ii) L={a"b"c/|n<j<2n}

¢) Consider the following grammar and find whether it is empty, finite or infinite
1) SOAB, A[IBCJa, B[1Cc|B, ClJa.
i1) SUAB, A[JBC|a, BUCCJb, ClJa, CLJAB.

6. a) Define Push Down Automata. Explain its model with a neat diagram.

b) Explain ID of PDA

c¢) Construct a PDA which accepts
i) L= {a’b"c"|n>0} ii) L={ aPbdc™ | p+m=q} iii) L= {a'bic | i+j=k;i>0,j>0}

7. a) Construct a CFG for the following PDA M=({q0,q1},{0,1},{Z0,X},0,q0,Z0,d) and 6 is
given by
0 (q0,1,Z0)=(q0,XZ0), & (q0,e,Z20)=(q0, €), 0 (q0,1,X)=(q0,XX)
0 (ql1,1,X)=(ql, ¢), 0 (q0,0,X)=(q1,X), 6 (ql,1,20)=(q0,Z0).
b) Construct PDA for the grammar S(JaA, A[JaABC|bBJa, B[b, Cllc.
8. a) Construct a Two Stack PDA which accepts L={a"b"c"|neN}

b) Design a Two Stack PDA which accepts L={a"b"a"b" | neN }

a) Differentiate Deterministic PDA and Non- Deterministic PDA.
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b) Explain acceptance of PDA by empty state and final state.
¢) Prove the equivalence of acceptance of PDA by empty state and final state.
10. a) Explain the closure properties of Context Free Languages.

b) Design a Non Deterministic PDA for the language L={0"1"| n> 1}.

UNIT-IV

1. a) Define Turing Machine. Explain its model with a neat diagram.
b) Explain ID of a Turing Machine.
c¢) Design a Turing machine which accepts the following languages
1) L= {a"b"c"| n>0}.
ii) L= {a’b" | n>1}.
1i1) accepting palindrome strings over {a ,b}.

2. a) Explain how a Turing Machine can be used to compute functions from integers to integers.
b) Design a Turing Machine to perform proper subtraction m — n, which is defined as m-n for
m > n and zero for m <n.
¢) Design a Turing Machine to perform multiplication.
3. Design a Turing machine to compute the following
a) Division of Two integers b) 2’s complement of a given binary number
4. Design a Turing machine to compute the following
a) x* b) n! c)log2 n
5. a) Explain in detail various types of Turing Machines.
b) List the properties of Recursive and Recursively Enumerable Languages.
¢) Explain the following

1) Church’s Hypothesis ii) Counter Machin
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UNIT-V
1. Explain the Chomsky Hierarchy with a neat diagram.
2. Explain in detail the Universal Turing Machine.
3. Explain the following
a) Decidability b) Post Correspondence Problem c¢) Turing Reducibility
4. Explain P and NP Classes.
5. a) Define NP-Complete and NP-Hard Problems.

b) Explain some NP-Complete Problems in detail.

19. Unit Wise Objective Type Questions

UNIT -1
1. The prefix ofabcis (d)
a.c
b.b
c. bc
d.a

2. Which of the following is not a prefix of abc?  (d)
a.e

b.a

c.ab

d. be

3. Which of the following is not a suffix of abc ?  (d)
a. e
b.c
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c. ab

4. Which of the following is not a proper prefix of doghouse ?  (d)
a. dog

b.d

c.do

. doghouse

o

. Which of the following is not a proper suffix of doghouse ?  (d)
. house

se

.e

d. doghouse

C o W

6. If then the number of possible strings of length 'n' is (d)
a.n
b.n*n
c.nn

d.2n

7. The concatenation of eand wis (b)
a. e

b.w
c
d

. ew
. can’t say

8 is a set of strings . (a)
a. Language
b. grammar
c. NFA
d. DFA

o is a finite sequence of symbols.  (c)
a. Language
b. grammar
C. string

d. NFA

10. Let a is any symbol, x is a palindrome then which of the following is not a
Palindrome. (d)

a. e

b.a

c. axa

d. xa
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11. Let a is any symbol , X is a palindrome then which of the following is a palindrome. (a)
a.e

b. xa

C. ax

d. aax

12. The basic limitation of FSM isthat (a)
a. it can't remember arbitrary large amount of information

b. it sometimes recognizes grammars that are not regular

c. it sometimes fails to recognize grammars that are regular

d. it can remember arbitrary large amount of information

13. The number of states of the FSM required to simulate the behavior of a computer witha
memory capable of storing m words each of length n bits is (b)

a.m

b.

c. 2mn

d. 2m

14. We formally denote a finite automaton by ( Q, ,q0 , F) Where is the transition
Function mapping from Q X to (a)

a.Q
b.
c.q0
d.F

15. Application of Finite automata is (a)
a. Lexical analyzer

b. parser

c. scanner
d. semantic analyzer

16. An FSM can be used to add two given integers . This is (b)
a. true

b. false

c. may be true

d. can't say

17. We formally denote a finite automaton by a tuple. (c)

o o
N LN AW
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18. We formally denote a finite automaton by Where Qis

a. a finite set of states
b. finite input alphabet
c. initial state

d. A set of final states

19. We formally denote a finite automaton by Where is

a. a finite set of states
b. finite input

acl.p ihniatbiaelt state
d. A set of final states

20. We formally denote a finite automaton by Where Qis

a. a finite set of states
b. finite input alphabet
c. initial state

d. A set of final states

21. We formally denote a finite automaton by Where Fis

a. a finite set of states
b. finite input alphabet
c. initial state

d. A set of final states

22. An automationisa device
a. generative

b. cognitive

c. acceptor

d. can't say

(a)

(b)

(©)

(d)

23. A grammar is a device (a)

a. generative
b. cognitive
c. acceptor
d. can't say

24. An FSM can be used to add two given integers .This is
a. true

b. false

c. may be true

d. can't say
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25. An FSM can be used to perform subtracttion of given two integers .Thisis _ (b)

a. true

b. false

c. may be true
d. can't say

26. The word formal in formal languages means
a. the symbols used have well defined meaning
b. they are unnecessary in reality

c. only the form of the string of symbols is significant

d. only the form of the string of symbols is not significant

27. The recognizing capability of NDFSM and DFSM [04S02]
a. may be different

b. must be different

c. must be same

d. may be same

28. Any given transition graphs has an equivalent
a. RE

b. DFA

c. NFA

d. DFA, NFA, RE

29. Finite state machine

(c)

recognize palindromes

(b)

a. can

b. can't

C. may

d. may not

30. FSM can recognize (d)
a. any grammar

b. only CFG

c. any unambiguous grammar

d. only regular grammar

31. Palindromes can _ t be recognized by any FSM because
a. FSM can't remember arbitrarily large amount of
b FSM cannot deterministically fix the mid point

(a)

c even of the mid-point is known, an FSM cannot find whether the second half of the

string matches the first half
d FSM can remember arbitrarily large amount of information

32.LetM=(Q.S,,q0,F),F={q0},S={0,1}.:
Then(q0,110101) (a)
a.q0
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b.q2
c. q3

33.LetM=(Q,S,,q0,F),F={q0},S={0,1 }.:

Then L(M) is the set of strings with ~ number of 0's and Number of 1's .

(c)

a. odd, odd
b. odd, even
c. even, even
d. even, odd

34.Let M =(Q,S, ,q0,F),F={q0},S={0,1}.:
Then(q0,110) (c)
a.q0

b. ql

c.q2

d.q3

35.LetM=(Q,S, ,q0,F),F={q0},S={0,1}.:

Then which of the following is accepted (a)
a. 110101

b. 11100

c. 00011

d. 111000

36. LetM=(Q,S,,q0,F),F={q0},S={0,1}.:

Then which of the following is not accepted (d)
a. 11101

b. 110001

c. 0011

d. 1101

37. In transition diagrams states are representedby (b)
a. ellipses

b. circles

c. triangles

d. rectangles

38. In transition diagrams a state pointed by an arrow represents the state.  (c)
a. final

b. interior

c. start

d. final or start

39. In transition diagrams a state encircled by another represents state.  (a)
a. final
b. interior
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C. start
d. final or start

40. NFA stands for
a. Non deterministic finite automaton
b. Non deterministic finite analysis
c¢. Non deterministic finite acceptance
d. Non deterministic finite authorization

41. Consider the following NFA

Now(qgO0,01)=_ (a)
a. {q0, ql}

b. {q0, g3.,94 }

c.{q0,ql, g4}

d. {qg4 }

42. Consider the following NFA

Now ( q0,010)= (b)
a. {q0,ql }

b. {q0 q3}

c.{q0,ql,q4 }

d. {q4}

43. Consider the following NFA

Now ( g0, 01001 )= (c)
a. {q0,ql }

b. {q0,q3 }

c. {q0, ql,q4}

d. {qg4 }

44. Consider the following NFA

Now (q0,0)=_ ()
a. {q0,ql }

b. {q0,qg3 }

c. {q0, ql,q4}

d. {qg4 }

45. Let NFA has a finite number n of states ,the DFA will have at most
(d)

a.2n

b. n/2

c.n2

d.2n

46. Let NFA has a finite number 6 of states ,the DFA will have at most
(d)

a. 12

b.2
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c. 36
d. 64

47. Can a DFA simulate NFA ? [08S01] (b)
a. No

b. Yes

c. sometimes

d. depends on NFA

48. The DFA start state= (c)
a. NFA start state

b. NFA final state

c. closure( NFA start state )

d. closure ( NFA final state)

49. Let maximum number of states in a DFA =64 .

Then it's equivalent NFA has states. (d)
a.2

b. 4

c.8

d. 6

50. Let maximum number of states in a DFA =128 .
Then its equivalent NFA has states. (b)
a. s

b. 7

c. 8

d.9

51. Let maximum number of states in a DFA =1024.
Then it's equivalent NFA has =~ states. (c)
a. s

b. 7

c. 10

d. 11

52. Choose the wrong statement (d)

a. Moore and mealy machines are FSM's with output capability
b. Any given moore machine has an equivalent mealy machine
c. Any given mealy machine has an equivalent moore machine
d. Moore machine is not an FSM

53. Choose the wrong statement (d)

a. A mealy machine generates no language as such
b. A Moore machine generates no language as such
c. A Mealy machine has no terminal state

d. A Mealy machine has terminal state
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54. The major difference between a mealy and a moore machine is that (b)
a. The output of the former depends on the present state and present input

b. The output of the former depends only on the present stste

c. The output of the former depends only on the present input

d. The output of the former doesn't depends on the present state

55. In moore machine shows (©)
a. states

b. input alphabet

c. output alphabet

d. Final state

56. A melay machineisa tuple. (d)
a. 4
b. 5
c.7
d. 6
UNIT-11

57. In case of regular sets the question ' is the intersection of two languages a language of the
same type ?'is (c)

a. Decidable

b. Un decidable

c. trivially decidable

d. Can't say

58. In case of regular sets the question 'is the complement of a language also a language of the
same type ? 'is ()

a. Decidable

b. Un decidable

c. trivially

dd.e Cciadna'tb slaey

59. In case of regular sets the question'isLInL2=F?'is (a)
a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

60. In case of regular sets the question ' is L=R where R is a given regular set ?' is (a)
a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say
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61. In case of regular sets the question 'is L regular?' is
a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

62. In case of regular sets the question 'Is w in L? 'Is
(a)

a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

63. In case of regular sets the question 'is L = F? 'Is
a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

64. In case of regular sets the question'isL=*?1s (a)
a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

65. In case of regular sets the question'isL1=12?‘%s __ (a)
a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

66. In case of regular sets the question 'is L1subset or equal to L2? ‘Is
a. Decidable

b. Undecidable

c. trivially decidable

d. Can't say

68. Let r and s are regular expressions denoting the languages R and S.
Then (r +s)denotes (c)

a. RS

b. R*

c. RUS

d. R+
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69. Let r and s are regular expressions denoting the languages R and S.
Then (r s) denotes (a)

a. RS

b. R*

c. RUS

d. R+

70. Let r and s are regular expressions denoting the languages R and S.
Then ( r*) denotes (b)

a. RS

b. R*

c. RUS

d. R+

71. denotes all strings of 0,s and 1,s.

d. (0+ 1)*

72.(0+1) * 011 denote all strings of 0's and 1's ending in
a.0

b. 0111

c.011

d. 111

73. Letr, s, t are regular expressions. (r* s *) * =

(d)

(c)

a. (r-s)*
b. (rs)*
c.(r+s)*
d. (s-r)*

74. Let 1, s, t are regular expressions. (1 +s)* =
a.r *s*

b. (rs)*

c.(r¥s*)*

d. r *+s*

75. Let 1, s, t are regular expressions. ( r* )* =
a.r

b. r*

c. F

d. can’t say

76. Let 1, s, t are regular expressions. (e + 1 )* =
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77. Let 1, s, t are regular expressions. r + s =
a.rs

b.s+r

C.ST

d.r/s

78. Let, s, t are regular expressions. (r+s) +t=
a. r +(s +t)

b.rst

c.rt

d.st

79. Let 1, s, t are regular expressions. (rs)t=
a.rs

b.rt

c. 1(st)

d.st

80. Let 1, s, t are regular expressions. r( s+ t) =
a.rs

b.rt

c.rs-rt

d.rs+rt

81. Letr, s, t are regular expressions. (r +s) t=
a.rt+st

b. (r-s)t

c.(rs)t

d. t(rs)

82. In NFA for r=e the minimum number of states are

_____________________ (b)

_______________ (a)

________________ (©)

___________________ (a)

(b)

po o
W N = O

83. In NFA for r=F the minimum number of states are
a.0
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faoe o
W N =

84. In NFA for r=a the minimum number of states are

(c)

po o
W N = O

85.(e+00)*=__ (d)
a. e

b. 0

c.e0

d. (00 )*

86.0 (00)*(e+O)1 +1=_ (a)
a.00* 1 +1

b. 00* 1

c.0*1+1

d. 00*+1

§7.1+01=__ (b)
a.e+0

b.(e+0)1

c.1(e+0)

d. 101

88. Let f(0) =a and (1) =b* Then f(010) =
a.a

b. b*

c.ab*a

d. aba

89. Let f(0)=a and f(1) = b* If L is the language 0*(0+1)1* then f(L)= _
a. ab

b. ab*

c. b*

d. a* b*

90. Let L1 be 0*10* and L2 be 1 0* 1 The quotient of L1 and L2 is
a. empty

b. 0*

c. 1

d. 10*

91. Let L1 be 0*10* and L2 be 0* 1 The quotient of L1 and L2 is
a. empty
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92. Let L1 be 10* 1 and L2 be 0* 1 The quotient of L1 and L2 is
a. empty

b. 0*

c.l

d. 10*

93. 'The regular sets are closed under union'ss (a)
a. True

b. False

c. True or False

d. can't say

94. 'The regular sets are closed under concatenation' is
a. True

b. False

c. True or False

d. can't say

________ (2)

95. 'The regular sets are closed under kleene closure'is (a)
a. True

b. False

c. True or False

d. can't say

96. 'The regular sets are closed under intersection' is
a. True

b. False

c. True or False

d. can't say

_____________ (a)

97. The class of regular sets is closed under complementation .That is if L is a regular set and L
is

subset or equal to * then
a.

b. *

c.*+L

d.*-L

is regular set (d)

UNIT — 111

98. Regular grammars also known as grammar. (d)



a. Type 0
b. Type 1
c. Type 2
d. Type3

%. grammar is also known as Type 3 grammar. (d)
a. un restricted

b. context free

c. context sensitive

d. regular grammar

100. Which of the following is related to regular grammar ? ()
a. right linear

b. left linear

c. Right linear & left linear

d. CFG

101. Regular grammar is a subset of grammar. (d)
a. Type 0.

b. Type 1

c. Type 2

d. Type 0,1 &2

102. P,Q, R are three languages .If P and R are regular and if PQ=R then  (¢)
a. Q has to be regular
b. Q cannot be regular

c. Q need not be regular
d. Q has to be a CFL

103. Let A={0,1 } L=A *LetR={0nln,n>0} then LUR isregularand Ris _  (b)
a. regular

b. not regular

c. regular or not regular

d. can’t say

104. Let L1 =(a+b) * a L2 =b*(a+b)

L1 intersection L2=_ (d)
a. (atb) * ab

b. ab (atb) *

c.a(atb)*b

d. b( atb)*a
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105. Let L denote the language generated by the grammar S0s0100 then (c)
a.L=0+

b. L is CFL but not regular

c. L is regular but not 0 +

d. L is not context free

106. Let A={0,1 } L=A *LetR={0nln,n>0} then LUR
a. regular

b. not regular

c. regular or not regular

d. can't say

107. Which of the following are regular? (d)
a. string of 0's whose length is a perfect square

b. set of all palindromes made up of 0's and 1°s

c. strings of 0's whose length is prime number

d. string of odd number of zeros

108. Pumping lemma is generally used for proving (b)
a. a given grammar is regular

b. a given grammar is not regular

c. whether two given regular expressions are equivalent are not
d. a given grammar is CFG

109. Pick the correct statement the logic of pumping lemma is a good example of
a. the pigeon hole principle

b. divide and conquer

c. recursion

d. iteration

110. The logic of pumping lemma is a good example of
a. iteration

b. recursion

c. divide and conquer

d. the pigeon hole principle

I11.LetL1 = {nm=1,2,3.....}
L2={n,m=123....}
L3={n=12,3..... }

Choose the correct answer (a)
a. L3=L1 intersection L2

b. L1, L2, L3 are CFL

c. L1, L2 not CFL L3 is CFL

d. L1 is a subset of L3
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112. Choose the wrong statement (a)

a. All languages can be generated by CFG

b. Any regular language has an equivalent CFG

c. Some non regular languages can _t be generated by CFG
d. Some regular languages can be simulated by an FSM

113. In CFG each production is of the form Where A is a variable and is string of
Symbols from (V, T are variables and terminals ) (d)
a.V

b. T

c. VUT

d. *(VUT)

114. Any string of terminals that can be generated by the following CFG (d)
a. has atleast one b

b. should end in a 'a'

c. has no consecutive a's or b's

d. has atleast two a's

115. CFG is not closed under (©)
a. union

b. kleene star

c. complementation

d. product

116. The set A= { n=1,2,3 ..... } 1s an example of a grammar that is (©)
a. regular

b. context free

c. not context free

d. can’t say

117. Let G=(V,T,P,S) be a CFG. A tree is a derivation (or parse) tree for G if If vertex n has
label ? thennisa  node (d)

a. root

b. interior

¢. root or interior
d. lea

118. The vernacular language English ,if considered a formal language is a (b)
a. regular language
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b. context free language
c. context sensitive language
d. can’t say

119. The language constructs which are most useful in describing nested structures such as

balanced parentheses matching begin ends etc are
a. RE

b. CFG

c. NM CFG

d. CSG

120. CFL are closed under (c)
a. Union, intersection

b. kleene closure

c. Intersection, complement

d. complement, kleene closure

121. Recursively enumerable languages are accepted by?
a. TM

b. FA

c. PDA

d. None

122. The statement —*ATM can’t solve halting problems
a. true

b. false

c. still an open question

d. none of the above

123. The language { 1n 2n 3n/ n>=1} is recognized by?
a. FA

b. PDA

c. T™M

d. None of the above

124. The language L (0*n 1”n 2”n where n>0) is a (b)
a. context free language
b. context sensitive language

c. regular language

d. recursively enumerable language

125. Recursively enumerable languages are not closed under.

a. Union

b. Intersection

c. Complementation
d. concatenation
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126. The class of languages generated by ---- grammar is exactly the linear bounded languages.
(b)

a. RG

b. CFG

c. CSG

d. PSG

127. Which of the following is the most general phase-structured grammar? (b)
a. regular

b. context-sensitive

c. context free

d. none of the above

128. The number of internal states of a UTM should be atleast (b)
a. 1
b.2
c.3
d.4

129. Context Sensitive Grammar (CSG) can be recognized by (b)

a. Finite state automata

b. 2-way linear bounded automata

c. push down automata

d. none of the above

130. The language L= (0"n 1”°n 2R 3”R where n, R>0) is a (a)
c. context free language
d. context sensitive language

C. regular language

d. recursively enumerable language

130.A Pushdown automata is.... if there is at most one transition applicable to each configuration
?

a. Deterministic (a)
b. Non Deterministic

c. Finite

d. Non Finite

131. The idea of automation with a stack as auxiliary storage? (b)
a. Finite automata

b. Push down automata

¢. Deterministic automata
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d. None of these
132. Suppose ((p,a,l1),(g,[1)) is a production in a push-down automaton. True or

false:a [ is popped from the stack if this production is used.
b [ is pushed onto the stack if this production is
used.c [] is popped from the stack if this production

is used.d [J is pushed onto the stack if this production

is used.

133. Which of the following is not accepted by DPDA but accepted by NDPDA ()
a. Strings end with a particular alphabet
b. All strings which a given symbol present at least twice

c. Even palindromes

d. None

134. PDA maintains (d)

a. Tape

b. Stack

c. Finite Control Head

d. All the ab

UNIT -1V

Turing machine can be used to (©)

a. Accept languages
b. Compute functions
c.a&b
d. none

136. Any turing machine is more powerful than FSM because (©)

a.Tape movement is confined to one direction

b.It has no finite state control
c.It has the capability to remember arbitrary long input symbols
d. TM is not powerful than FSM
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137.In which of the following the head movement is in both directions (d)
a. TM
b.FSM
c.LBA
d.a& c

138. A turing machine is (a)
a. Recursively enumerable language
b. RL
c.CFL
d.CSL

139. Any Turning machine with m symbols and n states can be simulated by another TM with
just
2 s symbols and less than (d)
a. 8mn states
b.4mn+8states
c. 8mn+ 4 states
d. mn states

IT -

134. Push down automata represents

a. Type 0 Grammar
b. Type 1 Grammar
c. Type 2 Grammar
d. Type 3 Grammar

135. If every string of a language can be determined whether it is legal or
illegal in finite time the
language is called
a. Decidable
b.undecidable
c.Interpretive
d. Non deterministic
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136. PCP having no solution is called
a. undecidability of PCP
b.decidability of PCP
c.Semi-decidability of PCP
d None

137. Which of the following is type- 2 grammar?
a. A— a where A is terminal
b. A— o where A is Variable
c. Both
d. None

20. Tutorial Problems
UNIT-1

1. Define epsilon closure. Find NFA without ¢ for the following NFA with ¢

whereq0-initial state q3-final state
a b €

qo qo 0] ql

ql 9 {a3.q1}| q2

q2 q2 9 {ql.q3}

q3 0 ) 0

2 a) Construct DFA equivalent where initial and final state is q0
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0 1
q | q0 ql
ql | ql {q0,q1}

b )Construct DFA equivalent where initial state is A and final state is C

0 1 3
A AB | A C
B C (0] 0
C C C A

3. Minimize the FA given below and show both given and reduced FA’S are equivalent or

not whereq0-initial state q6-final state

0 1
qo | ql q2
ql g3 |q4
Q2 | g5 |6
Q3 |93 |q4
g4 |95 |qo
Q5 |93 |q4
q6 | g5 | g6

4.a) Discuss about FA with output in detail

b) Convert the following melay machine to moore machine

Input symbol=0 Input symbol=1

Nextstate | output Nextstate | output
q0 ql N q2 N
ql ql Y q2 N
q2 ql N q2 Y

5. a) Explain significance of NFA with ¢ transitions and write differences between NFA

with € andordinary NFA. Define NFA-¢ transitions
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a=0 a=1 output
qo ql q2 1
ql q3 q2 0
q2 q2 ql 1
q3 q0 q3 1
UNIT-II

1. Define grammar, regular grammar, right linear grammar, left linear grammar with examples.
2. a) what are the rules to construct regular grammar for a given finite automata

b) Construct regular grammar for the given TT where g3 is final state

0 1
qQo |ql |¢
ql g2 |ql
Q2 |92 |q3
Q3 |92 |ql

3.a) What are the rules to construct finite automata for a given regular grammar
b) Construct FA recognizing L (G) where the grammar is
SaS|bAb
AlJaAbS|a
4. a) Write short notes on context free grammar

b) Obtain CFG to obtain balanced set of parentheses (that is every left parentheses should
match with the corresponding right parentheses

5.a) Define derivation, derivation tree, sentential form, LMD, RMD
b) Find LMD, RMD, and DT for the string: 00110101 where the grammar is
SCI0B|1A
ADO|OS|TAA

B(/1/1S|0BB
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1. Given the grammar G as S[J0B|1A, A[J0|0S|1AA, BJ1|1S|0BB. Find leftmost and
rightmost derivation and derivation tree for the string 00110101.

2. Construct the leftmost, rightmost derivation and parse tree for the following grammar
which accepts the string aaabbabbba S[1aB|bA, AlJaS|bAAla, B[JbS|aBB|b.

3. Simplify the following grammar: S[JaA|aBB, A[JaAAle, BLIbB|bbC, C[IB.

4. Simplify the following grammar: S[JAaB|aaB, A[ID, B{JbbAle, DUE, ELJF, F(JaS.

5. Convert the following grammar into CNF
SaA|aB|C, AlJaBJe, BlJaA, C[1cCD, D[Jabd.

6. Convert the following grammar into GNF:S[1AB, A[IBS|b, B[1SA|a.

7. Show that L={a "b" c"|n>1} is not CFL.
8. Construct a PDA accepting {a"b"[n>1} by Empty Stack and by final state.

9. Construct PDA for the grammar S{]aA, AlJaABC|[bB|a, B[Ib, Cllc.

UNIT-1V

1. Design a Turing Machine M to accept the language L= {0"1"|n>1}.

2. Design a Turing Machine M to accept strings of the language L= {a"b"c" | n>0}.

3. Design a Turing Machine to perform proper subtraction m — n, which is defined as m-n for
m >n and zero for m <n.

4. Design a Turing Machine to perform multiplication.

5. Design a Turing Machine that gives two’s complement for the given binary representation
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UNIT-V

1. Show that the PCP with two lists x=(b,bab® ba) and y=(b,ba,a) has a solution. Give the
solution sequence.

2. Find the solution for PCP problem given below

List A List B
1 | wi Xi
1 |a aaa
2 | abaaa ab
3 |ab b

3. Explain why the PCP with two lists x= (ab,b,b) and y=(ab? ba,b?) has no solution?

4. Consider the following Turing machine defined as M=({q0,q1,qA},{0,1},{0,1,B},,q0,B,{qA})

a b B

q0 | (qL,b,R) | (ql,a,L) | (ql,b,L)
ql | (ga,a,L) | (q0,a,R) | (ql,a,R)
qa

State whether for the string w=ab, Turing Machine halts?

5. Show that the satisfiability problem is in Class NP?

21. Known Gaps if any
No Gaps for this course.
22. Discussion topics

1) Importance of formal languages and it use.

2) Applications of automata theory.

3) Types of finite automata and its application.

4) Importance of FSM with outputs & what are they?
5) Importance of grammar & its formalism.
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6) Grammar Normalisation techniques
7) Significance of push down automata
8) Types of PDA & its conversions

9) Significance of Turing machine

10) Types of languages & its importance.
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